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Chapter 1

Introduction

1.1 DK-DEM

DK-DEM, the national Danish digital elevation
model, consists of three primary products (Dalå
et al., 2009):

1. A gridded digital terrain model (DTM)

2. A gridded digital surface model (DSM)

3. A set of terrain contour curves

Supplementary products include a digital terrain
model with bridges included (for orthophoto pro-
duction), but specifically not the raw data (i.e.
the point cloud) used for computing the grids.

The gridded models (DSM and DTM) have a
grid ground sample distance (GSD) of 1.6 m (i.e.
≈ 0.4 point/m2) and were based on airborne Li-
DAR observations with a similar mean density.

The LiDAR data sets used were collected by
the companies BlomInfo and Scankort in the
time frame 2005–2007. So while DK-DEM was
a big improvement compared to what was avail-
able prior to its introduction in 2009, it was al-
ready at that time slightly dated.

For many purposes, DK-DEM is still perfectly
adequate, but for other purposes (most obviously
the ones exceeding the original scope of DK-
DEM) it has shown necessary to collect new
data. These data, typically collected by public
institutions with special tasks in limited areas,
could be put to good use in the process of updat-
ing DK-DEM. The aim of this report is to take
some steps towards a practical realization of just
that.

1.2 Scope and aim

Since the original point cloud data sets behind
the DK-DEM grids are not available, all updates

must be carried out by combining the existing
grids with new data, which may be either grids
or point cloud data.

A few years ago, Joachim Höhle (Höhle,
2009) presented a very systematic approach to
DK-DEM updates, suggesting the use of pho-
togrammetric methods, systematically utilizing
aerial photos already collected for mapping, to
generate new height grids with an accuracy ap-
proaching that of LiDAR. These height grids
will then fully replace the existing LiDAR based
grids.

In a sense, this report takes the opposite ap-
proach to Höhle: rather than generating height
data from sytematically collected data of oppor-
tunity, we are aiming for utilizing existing height
data, collected (in potentially non-coordinated or
even non-systematical, ways), for opportunistic
updating of the existing height model.

Combining the two approaches, we may be
able to put all available data into optimum use
and, not the least, gain improved insight and con-
fidence in the precision and accuracy of the up-
dated model.

It is not just in its approach, but also in its
scope and aim, the work presented here differs
from that of Höhle (2009): Höhle presents and
evaluates a practical study based primarily on
the use of commercial implementations of al-
gorithms and methods that have been developed
through more than a decade of research by Höhle
and his colleagues in international surveying and
photogrammetry laboratories.

This report, on the other hand, presents work
based on methods for gravity data analysis, orig-
inally developed and used since the 1960s by the
physical geodesy community. The application
of these methods to elevation data is unconven-
tional, so in order to further develop the methods
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and ideas within a controlled framework, all the
work presented here is based on simulated data
(albeit data derived from a real DTM covering a
1 km × 1 km test site).

Since the results are encouraging and the im-
plementation straightforward, I hope, in future
work, to be able to follow Höhle’s example of
evaluating full scale experiments based on real
world data (cf. section 5.1).

1.3 Data assimilation

Data assimilation is a term primarily used in nu-
merical weather prediction, where it covers the
process of combining newly arrived atmospheric
observations with the current model forecast, in
preparation for the next forecast cycle. Appar-
ently this has nothing to do with height models,
so how did data assimilation make it into the title
of this report? For two reaons, really:

First, data assimilation in the form of op-
timum interpolation is an idea for which the
time was ripe in the 1960s: Largely similar ap-
proaches: optimum interpolation in dynamic me-
teorology, kriging in mining engineering, and
least squares collocation in geodesy1, were pub-
lished within a few years time. So the term data
assimilation hints at all these ways of integrating
spatial and/or spatio-temporal observations in a
way that optimizes the recovery of the physical

signal (modelled as a stochastic process) behind
the data.

Second, data assimilation, ethymologically
speaking, hints at a process of “making sim-
ilar” (to assimilate). And making data simi-
lar is exactly what we need when taking the
opportunistic-synergistic approach of making as
much use as possible of whatever data that hap-
pens to come our way.

Getting better data for one area does not in
any way make it possible for us to say much
new about a neighbouring area. Hence, we must
make existing and new data fit together – make
them similar.

Sometimes we may even find that the long
wavelength accuracy of the existing model may
be much better than the new data, while the new
data still have much higher accuracy at short
wavelengths. 2 This is especially the case for
corridor mapping data sets, where long, essen-
tially one dimensional, areas around elongated
features (power lines, railroads, highways) are
mapped using just one flight line.

Hence the term data assimilation – to hint at
a two way process that in one direction aims at
updating an existing model by incorporating new
data (as in a human cognitive process), and in the
other direction makes the new data more similar
to the existing, by propagating a splash of preju-
dice/prior knowledge/existing state, to the obser-
vations before incorporation.
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Chapter 2

Prerequisites

2.1 Introductory remarks

This chapter presents some of the more impor-
tant mathematical and geophysical prerequisites
for the experiments presented in chapter 4. The
presentation is neither extensive nor complete,
it is simply a brief reminder that may be safely
skippped by readers well informed in these mat-
ters.

But before skipping on to the experiments, the
reader is encouraged to consider a few points
about updating of height models which may put
the experiments in a different perspective:

1. If we have new and “perfect” data for an
area that reveals a bias in the heights of the
old model, what should we do at the border
between old and new data?

• Introduce the new data directly in
the model, and live with the step in-
evitably introduced on the border be-
tween the biased and the unbiased
data?
• Arbitrarily modify the old data near

the border to get a smooth transition?
• Gradually introduce the bias of the old

data into the new data, as we get closer
to the border?

2. The difference between updating and bring-
ing up to date: what should be done in ar-
eas where we have new data, but also know
that these data are already outdated by even
newer developments?

3. New observations having error bars falling
entirely within the error bars of the old
model may actually not bring any new in-
formation to the table. Do we update the

models anyway (e.g. to get a local reduc-
tion of the error bars)?

4. What should we do if we get new, but tech-
nically inferior data (e.g. more noisy and/or
lower resolution than the existing model)
for an area where we know that changes
have happened.

Any competent practitioner will have good an-
swers or opinions about these questions.

But when updating a national height model we
are changing an essential piece of the geospatial
infrastructure. A piece that may be in use in un-
known and unexpected ways in various institu-
tions. Hence, updating/changing the model may
break existing applications in interesting, but ex-
pensive and disrupting, ways.

This means that a large number of relevant
stakeholders may have differing opinions on the
subject. Opinions that may even be mutually ex-
clusive.

A technically simple way to deal with
this could be to operate with a conservative
model that is only updated at predictable and
agreed intervals, and a progressive model semi-
automatically incorporating all available new
data, including their potential errors—Bleeding
Edge, Blunders Included!.

But even in the case of stakeholder consen-
sus on a purely conservative model, one should
not underestimate the value of a process of con-
tinuously integrating new data, even though the
improved model will not be distributed: in the
case of continuous integration, one gets a much
better feeling of the actual quality of the exist-
ing model, which in turn may lead to improved
metadata.
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2.2 Spatial autocovariance

Spatial autocovariance (or simply spatial covari-
ance) is a concept describing how well a physical
observable is represented by a nearby measure-
ment. To define the autocovariance we start from
the variance of a set of n spatial observations zi:

C0 = ∑
z2

i
n
. (2.1)

Readers expecting a different expression are re-
ferred to the note on means versus models below.

We now define the lag, d as the distance be-
tween two observations. For any given d, we
compute the variance-like expression

Cd = ∑
ziz j

nd
(2.2)

where the sum is understood to run over all nd
pairs {zi,z j} having a mutual distance of d (or,
in most practical cases, a mutual distance of ap-
proximately d).

Computing Cd for a range of different lags re-
sults in a discrete set of numbers known as the
empirical covariance. To be able to estimate the
covariance for any d, we fit a continuous model
to the discrete set.

The Hirvonen covariance model

One of the simplest and most useful covariance
models was published by Hirvonen (1962). Hir-
vonen’s model is isotropic, i.e. assuming that the
covariance is a function of distance only (which
we also did implicitly in the description above).
The Hirvonen model is defined as:

CH(d) =
C0

1+
(

d
Ld

)2 (2.3)

where C0 is the variance of the data set (equa-
tion 2.1), and Ld is the lag for which the covari-
ance Cd (equation 2.2) has dropped to C0/2.

C0 and Ld can both be read directly from a plot
of the discrete empirical covariance values. But
be aware that C0 and Ld are not just properties of
the data set. They are properties of the physical
field investigated.

Hence, one should be very sceptical if a new
data set exhibit covariance values that differ
much from the existing. In other words, estima-
tion of a covariance model is a natural early step
in the acceptance check of any new data set.

A note on means versus models

In geodesy it is common practice to work
on anomalies, rather than raw physical values.
Anomalies (or more generically speaking: resid-
uals) are computed with respect to a model, es-
sentially separating the deterministic part of the
signal from the stochastic. This enables us to use
the right tool for each job: Physical reasoning for
the deterministic part, and geostatistical methods
for the stochastic part.

When not working on anomalies, it is common
practice to model the deterministic part of a sig-
nal as the mean of the observations. Hence the
well known expression

σ
2 = ∑

(zi−m)2

n−1
(2.4)

for the variance of a set of n observations zi with
mean value m.

When subtracting an independently derived
deterministic model from the observations, we
really subtract something that is potentially more
meaningful than the mean (i.e. a local model
value, rather than a global mean).

In computations involving anomalies, the last
step is to add back the value of the appropriate
deterministic model, all in all a scheme known as
the remove-restore principle, cf. e.g. Hofmann-
Wellenhof and Moritz (2006, pp. 379–381).

Hence, the implied use of the remove-restore
principle in equations 2.1–2.2, plays the same
role as the removal of the mean, m, in equa-
tion 2.4 3.

It is, however, not uncommon to further fit
and subtract a low order spatial polynomial from
the anomalies. Essentially this amounts to mod-
elling (as a low order trend surface) effects un-
resolved by the deterministic reference model.
Evidently, when selecting a polynomial of order
zero, this is equivalent to removing the residual
mean, as in equation 2.4.

The use of n in the denominator of equa-
tions 2.1–2.2, rather than the n−1 used in equa-
tion 2.4, comes from the fact that n−1 signifies
the loss of one degree of freedom by the compu-
tation of the mean from the same sample used
to estimate the variance. When obtaining the
“mean equivalent” from an independent model,
this loss does not occur.
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2.3 A DEM filtering scheme

When applying to heights methods that were de-
veloped for use with gravity data, we must cut
some corners and cannot expect to gain the same
level of conceptual rigor as in the original field.

In the present work, this is most evident in the
case of splitting the deterministic part of the sig-
nal from the stochastic. The deterministic part
is constructed from the original DTM in a mean-
ingful, but openly heuristic, method dubbed Bi-
morphologically Constrained Filtering (BCF).

The method is documented by a code snippet
in appendix A.1, but in brief it is based on it-
erative application of still wider gaussian filters
then, for each grid point, selecting the maximum
degree of filtering still keeping the change below
a predefined threshold.

This threshold is then relaxed for singular out-
liers, which we do not want to consider part
of the deterministic signal. The relaxation is
based on operators from the field of mathemat-
ical morphology (Haralick et al., 1987). In other
words, the filter is constrained by both the land-
scape morphology and by mathematical mor-
phology. Hence, the Bimorphologically Con-
strained. . . moniker.

An example of BCF in action is shown in sec-
tion 4.1.

2.4 Spatial interpolation

In the experiments (chapter 4), we will need
to carry out spatial interpolation in various
ways. For information, we quote below (without
derivations, but with some comments), some of
the main results derived in the admirably clear,
compact, and highly recommended lecture note
by Nielsen (2009). For a very different (but
equally clear) approach, see Bourke (1999)

In general, interpolation is carried out by com-
puting a weighted mean of observations in the
vicinity of a point of interest (POI). Essentially
interpolation schemes differ only in how they de-
fine vicinity, and how they assign weights.

Nearest neighbour interpolation

In nearest neighbour interpolation, the observa-
tion nearest to the POI is assigned the weight
w = 1. All other observations are assigned the
weight w = 0.

Global mean interpolation

In global mean interpolation, all N observations
are assigned the weight w = 1/N. This also
means that all POIs will get the same value.

Local mean interpolation

In local mean interpolation, all n observations
within a given search radius r of the POI, are as-
signed the weight 1/n. For large values of r local
mean interpolation tends toward global mean in-
terpolation.

Inverse distance weighting

In inverse distance weighting, the weights are
constructed such that observations close to the
POI gets higher weights. Let di denote the dis-
tance from the POI to observation number i.
Then weights are assigned as:

wi =
1/di

∑
N
j=0 1/d j

Which is trivially generalized to weights based
on powers of the inverse distance:

wi =
1/dp

i

∑
N
j=0 1/dp

j
(2.5)

Often p = 2 is used (inverse square distance
weighting). Presumably inspired by the inverse
square nature of gravitational and electomag-
netic force fields. There is, however, nothing
magical about p = 2, so if using inverse distance
weighting, the p factor should be selected in a
way commensurable with the autocovariance of
the phenomenon at hand.

For p = 0, dp
i = 1 for all i, turning inverse dis-

tance weighting into global mean interpolation
(or local mean if the sum is restricted to points
within a certain distance from the POI).

For p→∞, the weight function drops off more
and more sharply, so in this case inverse distance
weighting tends toward nearest neighbour inter-
polation. For most practical purposes, p = 10 is
sufficiently close to infinity to make this happen.
This feature arguably makes 10 one of the small-
est infinities in common use!
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Figure 2.1: The Delaunay triangulation for a set of points: no point of the set is inside the circumcircle
of any triangle. Delaunay triangulations tend to avoid long skinny triangles since they maximize the
minimum angle of all the angles in the triangulation.

Kriging

In kriging (named after the South African mining
engineer Danie Krige), the prediction weights
are designed to result in a central estimator with
minimum estimation variance. This is a cryptic
way to say two things.

First that since we do not know the actual
value at the POI, we cannot know the size of the
prediction error (i.e. the difference between the
actual value and the predicted). But by designing
the estimator appropriately, we can make sure
that the statistical expectation value of the pre-
diction error is zero, i.e. that the mean error of a
large number of predictions is zero. This is what
central estimator means.

Second that once we have designed the esti-
mator to result in zero mean prediction errors,
we also want to have optimum confidence that
any individual prediction error is as small as pos-
sible (we do not want to achieve a zero mean by
delicately balancing huge errors with alternating
signs). Assuming that errors are approximately
normally distributed, the chance of running into
a large error grows with the variance of the dis-
tribution. Hence, by designing the weights to re-
sult in minimum error variance, we maximize the
chance that the error of any individual prediction
really is very close to zero.

To make this happen in real life, we need to es-

timate a good covariance model for the physical
field we are studying. Having obtained a vari-
ance model, we must compute variance values
CP j for the distances between the POI and the ob-
servations, and Ci j for the distances between the
individual observations. The weights can then be
found by solving the set of linear equations: C11 · · · C1N

... . . . ...
CN1 · · · CNN


 w1

...
wN

=

 CP1
...

CPN

 (2.6)

The prediction is then given by:

Z0 =
[

w1 · · · wN
] Z1

...
ZN

 (2.7)

The prediction variance is, in turn, given by

σ
2
0 =C0−

[
w1 · · · wN

] CP1
...

CPN

 (2.8)

To compute the set of N weights, we need to
solve a set of N linear equations. But the pro-
cessing power needed to do this is proportional
to N3, which quickly makes it prohibitively ex-
pensive in computer time to solve for more than
just a few weights.
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As a simple example consider the ratio be-
tween 53 = 125 and 33 = 27, indicating that
it takes almost 5 times as long to solve for 5
weights than for 3 weights.

This means that even for moderately large
computations, we need an efficient way to select
a small, relevant subset of observations for any
POI at hand.

To this end, the Delaunay triangulation comes
to the rescue.

2.5 Delaunay triangulation

The Delaunay triangulation was introduced by
the Russian mathematician Boris Delaunay (De-
launay, 1934). Any given set of points can be
organized as a area partitioning set of triangles
(see figure 2.1). The Delaunay triangulation is
defined as the (unambiguous) partitioning that
globally maximizes the minimum angle of the
entire triangulation.

For any triangle in a Delaunay triangulation,
no other points than its three corner points will

be situated inside the circumcircle of those three
points. Hence, elongated triangles are essen-
tially avoided, since they correspond to exces-
sively large circumcircles.

Due to its many practical uses, much effort has
been put into the derivation and development of
very fast algorithms for constructing the Delau-
nay triangulation. In this work, the QHULL al-
gorithm (Barber et al., 1996) is used. QHULL
is widely used in closed- as well as open source
software. The Triangle algorithm by Jonathan
Shewchuk (Shewchuk, 1996) is another excel-
lent implementation, but Triangle is less used
than QHULL, arguably due to a more restrictive
licencing policy.

Once the Delaunay triangulation is con-
structed for a given set of points, it is easy to
find the triangle surrounding any given POI, and
hence obtain a small set of 3 observations that
may not necessarily be the nearest neighbours
of the POI, but which are close to the POI and
spatially distributed in a way making them good
candidates for a robust estimation of the value
needed at the POI.

10



Chapter 3

Test site and test data

3.1 Test site location and to-
pography

The 1 km × 1 km test site used for the exper-
iments in chapter 4, is situated just northwest
of the village of Vejby in Helsinge Municipality,
North-Zealand (figure 3.1). The landscape of the
Vejby area is glacially shaped and gently undu-
lating. Due to its beauty, the area was the subject
of a large number of paintings from the 1840s
by the National Romantic painters J.Th.Lundbye
(cf. figure 3.2) and P. C. Skovgaard (Jørgensen,
1995).

The test site is characterized by relatively large
and sometimes steep, height variations. The
land use/land cover (LULC) includes hedgerows,
paths, dirt roads, farms, wetlands, lakes, a small
forest, farmland, a closed down and only par-
tially refilled, clay pit, and (in the northern end) a
cottage area from around 1960. All in all a land-
scape that is not only beautiful, but also challeng-
ing and hence highly interesting from a height
modelling point of view.

To establish a well controlled framework for
our DTM updating experiments, we introduce
synthetic changes in the existing DTM (sec-
tion 3.2), and use the modified model as the new
ground truth.

This ground truth is in turn used as target for
a synthetic LiDAR flight (section 3.3), generating
new synthetic observations of the changed ter-
rain.

Finally, in chapter 4, we combine the origi-
nal (unchanged) DTM with the new synthetic Li-
DAR observations, attempting to reproduce the
synthetic ground truth.

3.2 A DTM with synthetic
changes: The new
ground truth

The 1 km × 1 km test area is represented by a
626 × 626 grid stored in an ESRI ascii format
file (figure 3.1). We introduce change in the form
of a synthetic road spanning the grid rows num-
bered 523–527 (marked in white on figure 3.1).

The “road” is constructed as follows: First we
remove any across track slope by computing the
columnwise mean of the set of 5 rows.

Then we carry out an along track gaussian fil-
tering of the mean row, i.e. easing the road for
the cyclists by cutting hilltops and filling val-
leys (figure 3.3). Finally the filtered mean row is
copied back into the original five rows 523–527.

The resulting grid (figure 3.4) is now consid-
ered the new ground truth for the experimental
work.

3.3 Synthetic LiDAR observa-
tions

The synthetic LiDAR observations are intended
to simulate the result of a single flight strip in
a corridor mapping effort, mapping a strip cen-
tered on the new road. The observations are gen-
erated by this little snippet of Octave code, which
notably does not take any roll/pitch/yaw irregu-
larities into account:

1% rand: uniform, randn: gaussian randomness
2N = 2*100*1000;
3north = 6218000 + 160 + 100*(rand (N, 1) - 0.5)
4east = 694000 + 500 + 1000*(rand (N, 1) - 0.5)
5z = interp2 (h.x, h.y, g, east, north);
6% add gaussian noise with a variance of 5 cm
7noise = sqrt (0.05) * randn (N, 1);
8z += noise;

11



Figure 3.1: The test site covers a range of 6218000 m–6219000 m northing and 694000 m–695000
m easting in UTM zone 32/ETRS89 coordinates. Heights are in the range of 10.4 m–35.3 m (referred
to the Danish vertical datum DVR90) with a mean value of 18.3 m and a median of 15.6 m. The white
strip in the lower part of the figure indicates the position of the synthetic road introduced for the DTM
update experiments (cf. section 3.2).
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Figure 3.2: Johan Thomas Lundbye: Landskab fra Vejby (Landscape from Vejby), 1843.

10

12

14

16

18

20

22

24

694000 694200 694400 694600 694800 695000

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60 70 80

Figure 3.3: Left: The raw road profile (blue), and the final along track filtered road profile (black).
Right: The 50 point gaussian filter used to even out the bumps in the synthetic road.
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Figure 3.4: The final synthetic road introduced into the original grid.
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The call to interp2 interpolates new height
values from the ground truth grid g.

The constants of the code snippet are to be in-
terpreted as follows:

(6218000, 694000) Northing/easting of
the lower left corner of the test site.

(160, 500) The center of the LiDAR cov-
ered area is situated 160 m north and 500

m east of the loweer left corner.

(100, 1000) The flight strip is 100 m wide
(north/south) and 1000 m long (east/west).

N=2*100*1000 We need 2 observations/m2

for each of the 100 m × 1000 m covered,
i.e. a total of 200 000 observations.
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Chapter 4

Experiments

4.1 Experiment 1: Geostatis-
tical characterization

The first thing to do with a newly acquired
geodetic data set is to get a general feeling of
its characteristics. For data which can be plot-
ted in meaningful and straightforward ways (e.g.
imagery, simple time series), plotting is the ob-
vious first action. But in our case of irregularly
sampled observations, a geostatistical character-
ization is the obvious first action.

Actually the first step of the geostatistical
characterization is not geostatistical at all, but
strictly statistical (sans geo-). The first step is
to plot the histogram of the data, to get an idea
of what kind of distribution is behind the data.

The upper left panel of figure 4.1 shows the
histogram for the heights of the DTM of the
test area (figure 3.1). It is not evident what
kind of distribution might fit this histogram, but
it certainly isn’t a normal (Gaussian-) distribu-
tion. This is even more clear from the QQ-plot
in the upper right panel of figure 4.1, where the
quantiles of the distribution (i.e. the lower quar-
tile, median, upper quartile, and their unnamed
brothers and sisters for other values than 25%,
50%, and 75% of the distribution mass) is plot-
ted against the corresponding quantiles of the
standard-normal distribution (i.e. the normal dis-
tribution with parameters (µ,σ2) = (0,1)). In a
QQ plot, normal distributions will be depicted as
a straight line, with the slope determined by the
σ2 parameter, and the offset determined by the µ

parameter of the actual distribution. It is evident
from the QQ-plot that the distribution of the raw
heights is not normal at all.

Suspecting that the non-normality is due to
autocorrelation effects induced by causal (deter-
ministic, non-stochastic, etc.) processes, we go

on to construct a “deterministic height surface”,
as described in section 2.3, using the code pre-
sented in appendix A.1. The resulting smooth
surface, and its corresponding anomalistic sur-
face are shown in figure 4.2.

The histogram for the anomalies are shown
in the upper left panel of figure 4.3. Despite a
marked “knee” around δh= 1m and a minor wart
around δh = −1m, the histogram looks much
more normal than the corresponding histogram
for the raw heights. The normality is confirmed
by the QQ-plot in the upper right panel.

Covariances

The covariances of the raw terrain model and the
anomalies, along with the corresponding Hirvo-
nen covariance models, are shown in the lower
right panels of figures 4.1 and 4.3, respectively.

The first thing to note is that removing the “de-
terministic height model”, really reduces both
variance and correlation length: Where the raw
DTM (with mean height removed, since it is not
an anomaly, as per the discussion in section 2.2)
corresponds to a Hirvonen model with parame-
ters (C0,Ld) = (85 m2,182 m), the correspond-
ing parameters for the anomalies are (C0,Ld) =
(0.57 m2,44.8 m). In other words: by removing
the “deterministic model”, the covariance scale
is reduced by a factor of almost 150, and the cor-
rellation length is reduced by a factor of more
than 4.

It is also striking how well the Hirvonen model
fits the actual data – especially in the interval
[0 . . .Ld], which is really the interval we usually
would need4.

One should, however, bear in mind that the
empirical covariances in these cases are based on
very simplified computations based directly on
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Figure 4.1: Raw DTM geostatistics. Upper left: Histogram. Upper right: Quantile plot of data
quantiles vs. quantiles from a standard normal distribution. Lower left: Empirical autocorrelation.
Lower right: Empirical autocovariance. Note that the autocorrelation only changes very slowly from
1. In other words, far away points are as important as very nearby points in predicting the height at
any given point.
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Figure 4.2: Left: filtered “deterministic” terrain model. Right: corresponding anomalistic (residual)
terrain model.

the gridded structure of the data: covariances are
computed for two directions only (the directions
of the northing and easting axes), and using the
boundary values of the grid as starting points.

Hence these data are based on 1252 sets of em-
pirical covariance values for each of the two di-
rections, each set consisting of 626 values cover-
ing the lags d ∈ [0 m . . .1000 m] at steps exactly
corresponding to the grid GSD of 1.6 m.

While being a simple and totally sensible app-
proach, one should expect more smooth covari-
ance values than what would be the case for the
the more complex algorithm necessary for arbi-
trarily distributed data.

The more complex algorithm has been used
for preparation of figure 4.4: Here, we work on a
dataset consisting of 63 grid lines centered on the
center line of the artificially introduced road (cf.
section 3.2), i.e. grid line number 525. In other
words, we work on a set of 63× 626 = 39438
grid points which we in this case treat as a non-
structured point cloud. Obviously, we might
have used the synthetic LiDAR data set cover-
ing the same region (cf. section 3.3), but to keep
in line with the data used above, we stay with the
orginal grid values.

Now, we randomly select 5 million point pair
combinations and sum up their products accord-
ing to equation 2.2. The sums are computed
in bins of width 1.6 m, centered on the set

[1.6,3.2,4.8, . . . ,1000] (see Nielsen (2009) for
details of the construction). In other words,
rather than the almost isotropic data used above,
each bin now gets contributions from point pairs
at different bearings and different distances (ex-
cept for the very first few bins, where only a few
combinations of distance and bearing are possi-
ble)

Not unexpected, the data in figure 4.4 look
rather more noisy than the previous plots. Also
note that the restriction to a smaller area has
reduced both the variance and the correlation
length of the raw values as well as the anomalies.
This is also as expected, as we now compare a
more uniform data set (especially with respect to
the raw heights, where we now avoid the effects
of the large north–south height undulation).

4.2 Experiment 2: Updating
with simple kriging

Figure 4.5 shows the original grid (figure 3.1),
improved with data predicted using the simple
kriging method described in section 2.4, and the
synthetic LiDAR data presented in section 3.3.

There really is not much to say about the re-
sults: in comparison with the artificial ground
truth (figure 4.5), the most striking differences
are the (expected) effects of the noise added in
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Figure 4.3: Anomaly DTM geostatistics. Upper left: Histogram. Upper right: Quantile plot of data
quantiles vs. quantiles from a standard normal distribution. Lower left: Empirical autocorrelation.
Lower right: Empirical autocovariance. Note that the autocorrelation falls rapidly from 1. In other
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Figure 4.5: The test site modified with updated values (computed by simple kriging) in the area
around the artificially introduced road. The effect of the deliberately introduced noise is clearly seen.
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Figure 4.6: Upper panel: The updated values computed by simple kriging in the area around the
artificially introduced road. Centre panel: The artificial ground truth (cf. section 3.2). Lower panel:
The updated values computed by simple kriging with noise reduction applied (cf. section 4.3).

the production of the synthetic LiDAR data.
In the next section we will show how this noise

can be reduced. Not by filtering the gridded data,
but directly as a part of the prediction process for
the updated grid values.

4.3 Experiment 3: Handling
observational noise

Consider a height field described by a Hirvonen
covariance model with the parameters (C0,Ld) =
(0.5 m2,5 m), and consider the configuration
shown in this sketch,

with 3 observations made at the 3 corners A,B,C
of a right triangle with side lengths a = 3, b = 4,
and c = 5. Furthermore, let us place the origin of
our system at A, and the POI, P at the barycen-
ter of the triangle (i.e. at the intersection of its
medians). In this case, the code in appendix A.2,
solving the simple kriging system, equation 2.6,
results in the weight vector

w0 =

 0.30420
0.29346
0.49874



Now consider that the observation at point A
was influenced by a noise characterized by σ2 =
0.1m2. If we add that noise term to the diago-
nal element for A, and solve once again for the
weights, we get

wa =

 0.23022
0.30178
0.53773


i.e. the weight for the noisy observation is re-
duced (and so is the total sum of weights).

But what if all 3 observations were equally in-
fluenced by noise? Let us add the same noise
term to the other diagonal elements, and solve
once again for the weights:

wabc =

 0.29204
0.29875
0.41855


Now, the two weights originally largest are re-
duced, while the smallest weight is slightly en-
larged. All in all moving the estimator more in
the direction of equal weights, which would im-
prove the suppression af random noise.

In figure 4.6, we show the result of adding the
artificially generated noise source (section 3.3)
to the diagonal elements of equation 2.6 for an
entire grid prediction experiment.

The result is quite convincing, although one
should consider that only part of the noise reduc-
tion is due to the blurring: another part is due to
the relative downweighting of the anomaly com-
pared to the deterministic part.
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One may see this as an advantage or a disad-
vantage. In either case, the downweighting with
respect to the deterministic part would not hap-
pen if using Ordinary Kriging (OK), rather than
Simple Kriging (SK) as used here: in OK, the
sum of the weights is forced to unity, and no prior
assumptions are made with respect to the mean
value of the signal, which is implicitly reesti-
mated for every prediction, hence, perhaps elim-
inating the need for computing the “determinis-
tic” surface.

The use of individual noise estimates for each
observation will probably become possible as
access to full waveform reflection data become
more common. When that happens, including
the noise term in the prediction process will
make even more sense.

4.4 Experiment 4: Eliminat-
ing drift by draping

Airborne LiDAR observations depend heavily
on a well functioning inertial navigation system
(INS) providing the pointing of the platform:
The combination of position information from
the GPS, and pointing from the INS is essentially
what makes it possible to convert LiDAR reflec-
tion timings to ground elevations.

But INS tend to drift – a feature that can often
be corrected for by cross over adjustments with

neighbouring flight strips. But in the case of cor-
ridor mapping, few or no neighbouring strips are
recorded. In such cases the technique of draping
(cf. e.g. Strykowski and Forsberg (1998)) comes
handy. Draping builds on the assumption that
if two datasets that are supposed to have identi-
cal long wavelength parts tend to drift from each
other anyway, then we must construct a correc-
tion surface.

We may think of the two datasets as an old,
stable but noisy model, and a newer drifting, but
less noisy one.

We construct the correction surface by low-
pass filtering both signals and subtracting them.
The draping operation is then carried out simply
by applying the correction surface to the newer
dataset.

The new dataset is then said to have been
draped over the old, inheriting the old dataset’s
long wavelength accuracy, while keeping its own
higher short wavelength accuracy.

Figure 4.7 shows a somewhat exaggerated ex-
ample based on simulated data: An old terrain
model of moderate quality (σ2 = 0.5m) is to
be updated by new data of much higher quality
(σ2 = 0.05m). Unfortunately, the new data suf-
fers from a huge drift of almost 8 m along the
100 km track. The draping process (see code in
appendix A.3) improves the RMS between the
“true” landscape and the new data from a ghastly
4.45 m, to the more acceptable 0.24 m
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Chapter 5

Outroduction

5.1 Future work

The fields of geostatistics and geodesy can pro-
vide plenty of useful methods and techniques for
updates of height models.

The next obvious step in the work will be to
use some of the methods presented here with new
real data, rather than the simulated data used in
this report.

Other interesting work will be the (fairly sim-
ple and ordinary) switch from Simple Kriging
to Ordinary Kriging, with its implicit reestima-
tion of the mean value for each prediction. This
may also eliminate the need for the deterministic
surface in the predictions (while it may still be
of use for visualisation and contour line genera-
tion).

Also the case of non-isotropic covariance
models, which has been left out of the scope for
this report, needs to be handled. A particularly
simple (conceptually, not implementation-wise!)
example of this is the handling of breaklines by
modifying covariances for vectors crossing the
breakline.

Another interesting way of handling break-
lines is through the direct inclusion of the break-
line into the Delaunay triangulation (i.e. a so
called constrained Delaunay triangulation).

Finally, there is the problem of surface mod-
els. In the case of surface models, we do not have
a geostatistically uniform area to model. This is
a significant complication, which will probably
lead on to new and interesting problems!

There’s plenty of work to take up!

5.2 Conclusion

For fear of sounding too optimistic, speaking
on the basis of purely synthetic data, I have re-

frained from quoting numerical results in this re-
port. But the examples presented have shown to
be quite convincing.

Hence, taking the geostatistical/geodetic route
seems to be a viable option, with plenty of new
opportunities that should be further explored.
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Notes
1 Least Squares Collocation is a considerably more

general framework than the other geostatistical approaches
mentioned. Cf. e.g. Krarup (1969) or Hofmann-Wellenhof
and Moritz (2006), chapter 10

2Although one should rather talk about precision than
accuracy in such cases

3One should, however, never understimate the potential
for holy wars over this issue. In this author’s totally subjec-
tive, and potentially uninformed, opinion, this is probably
due to the empirical roots of statistics, making it a fruit-
ful field of study and application alike—hence haunted by
domain specific practitioners, as well as more mathemat-
ically inclined theorists. In discussions of (geo)statistics,
these groups will often find themselves “divided by a com-
mon language”.

4For exactly this reason, the parameter C0 is computed
directly as the variance of the data, and Ld is found through
interpolation around the first lag corresponding to a vari-
ance of less than C0/2. If doing an actual least squares
fit, one would run a serious risk of putting way too much
weight on fitting the fluctuations for large lags.
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Appendix A

Code

A.1 Bimorphologically constrained filtering

NOTE: this code is taken directly from the Octave input file. Some lengthy input/output operations
have been edited out, and all subroutines called have been left out from the listing, as the code is
provided for illustration only – mostly as pseudocode.

1function ret = filtering (base, cmax, padsize)
2[h g] = (read header and grid data here)
3
4kernelsizes = [3 5 7 9 11 21 41 77]
5kernelvariances = [.1 .1 .1 .09 .07 .07 .04 .04]
6iter = prod(size(kernelsizes))
7f = zeros([size(g) iter]);
8
9f(:,:,1) = g;
10
11% filter
12
13
14for i = 2:iter,
15iteration = i
16kernel = gaussian(kernelsizes(i), kernelvariances(i));
17kernel = kernel*kernel’;
18kernel /= sum(kernel(:));
19f(:,:,i) = filter2 (kernel, f(:,:,i-1));
20end
21
22% compute corrections going from filtered to plain signal
23d = zeros([size(g) iter]);
24for i = 2:iter,
25d(:,:,i) = f(:,:,i) - g;
26end
27
28maxd = max(d(:,:,iter)(:))
29mind = min(d(:,:,iter)(:))
30
31% for each grid node select the filter giving maximum smoothness without excessive adjustment
32% avoid some noise by morphological transformations
33n = iter * ones (size (g));
34c = d(:,:,iter);
35for i = iter-1:-1:1,
36mask = logical((c > cmax) | (c < -cmax));
37mask = bwmorph(mask, ’clean’);
38mask = bwmorph(mask, ’open’);
39
40c(mask) = d(:,:,i)(mask);
41n(mask) = i;
42end
43
44final = g+c;
45
46
47
48kernel = gaussian(19, 0.1);
49kernel = kernel*kernel’;
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50kernel /= sum(kernel(:));
51f = filter2 (kernel, final);
52
53c = f - g;
54mask = logical((c > cmax) | (c < -cmax));
55absolutely_final = f;
56absolutely_final(mask) = final(mask);
57
58(write reults here)
59
60endfunction
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A.2 A noise reduction experiment

This is the code referred to in section 4.3
1
2% coordinates of observations
3A = [0 0];
4B = [4 3];
5C = [4 0];
6
7% coordinate of the POI
8P = (A+B+C)/3;
9
10Dp = [ sqrt(sum((P-A).^2)) % distance from P to A
11sqrt(sum((P-B).^2)) % distance from P to B
12sqrt(sum((P-C).^2)) ]; % distance from P to C
13
14
15
16Dn = [ 0 5 4 % distances from A to A, B, C
175 0 3 % distances from B to A, B, C
184 3 0 ]; % distances from C to A, B, C
19
20% Hirvonen parameters
21C0 = 0.5
22Ld = 5
23
24% Covariances between the observations
25Cn = C0 ./ (1 + (Dn./Ld).^2)
26
27% Covariances between the POI and the observations
28Cp = C0 ./ (1 + (Dp./Ld).^2)
29
30% Compute weights
31w0 = Cn\Cp
32
33
34% Assume observation at A is noisy
35Cn(1,1) += 0.1;
36
37% Compute new weights
38wa = Cn\Cp
39
40% Assume all observations are equally noisy
41Cn(2,2) += 0.1;
42Cn(3,3) += 0.1;
43
44% Compute new weights
45wabc = Cn\Cp
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A.3 A draping experiment

This is the code referred to in section 4.4.
1% true landscape 10 observations/km for 0..100 km:
2X = [0:0.1:100];
3
4Ltrue = 10 + 0.1 * X;
5
6% existing DTM: noisy
7Ldtm = Ltrue + sqrt(0.5)*randn(size(Ltrue));
8
9% the inertial navigation system drifts slowly.
10Inoise = sqrt(0.0001)*randn(size(Ltrue));
11Idrift = cumsum(abs(Inoise));
12max(Idrift)
13
14% new observations: less noisy, but drift from the INS
15Nobs = Ltrue + sqrt(0.05)*randn(size(Ltrue)) + Idrift;
16
17
18% box filter kernel
19B = ones(1,50)/50;
20
21% Filter the DTM
22w = Ldtm;
23% pad with boundary values to reduce boundary effects of the filtering
24u = [repmat(w(1), size(w)) w repmat(w(end),size(w))];
25% do a symmetric filtering to avoid pushing the signal rightwards
26f1 = filter(B, 1, u)(prod(size(w))+1:2*prod(size(w)));
27u = u(end:-1:1); % reverse raw signal
28f2 = filter(B, 1, u)(prod(size(w))+1:2*prod(size(w)));
29f2 = f2(end:-1:1); % reverse result
30Fdtm = (f1+f2)/2;
31
32% Then filter the new observations using the same code
33w = Nobs;
34u = [repmat(w(1), size(w)) w repmat(w(end),size(w))];
35f1 = filter(B, 1, u)(prod(size(w))+1:2*prod(size(w)));
36u = u(end:-1:1);
37f2 = filter(B, 1, u)(prod(size(w))+1:2*prod(size(w)));
38f2 = f2(end:-1:1);
39Fobs = (f1+f2)/2;
40
41% the correction factor is the long wavelength difference
42Corr = Fobs - Fdtm;
43
44% remove INS drift from New OBServations, creating the New DTM
45Ndtm = Nobs - Corr;
46
47plot (X’, [Ldtm; Nobs; Ndtm; Ltrue; Corr+5]’);
48grid on;
49xlabel (’distance [km]’);
50ylabel (’height [m]’);
51legend(’Ldtm’, ’Nobs’, ’Ndtm’, ’Ltrue’, ’Corr+5’);
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