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1 Foreword 

This report is the fulflment for 2009 of “Ydelsesaftale mellem Kort & Matrikelstyrelsen og Institut for Rum-
forskning og -teknologi, DTU om myndigsbetjening af Kort & Matrikelstyrelsen i form af forskningsbaseret 
rådgivning og forskning i relation til geodæsi og kortlægning i 2009-2012”, “Resultatmål 3: Metodeudvikling til 
topografsk kortlægning, Krav 1”. 

The report has been created as a result of a co-operation between the Technical University of Denmark (DTU), 
Department DTU Space and the National Survey and Cadastre – Denmark (KMS), Department Topographic 
Mapping. The KMS has defned the problem and delivered data for solving the problem and DTU has devel-
oped the solution. 

The problem dealt with in this report concerns automatic change detection: determination of changes in-
between two states. 

KMS conducts fight campaigns over a given geographical area approximately every third year (sometimes 
even more often). The outcome is nadir looking aerial photos and computed ortho photos. The photos are 
georeferenced by GPS, INS and aerial triangulation, and the images are used for 3D mapping. 

At time T0 the map database, at this time FOT, is established. At time T0 + Δt the map data base is to be 
revised, and a new fight campaign carried out. The revision process is carried out by 3D-superimposition of 
the existing map database onto the stereo models from the new fight campaign. 

Differences (changes) are manually detected and collected by a human stereo operator. This is a process 
step that is very time consuming and thus costly. Also it is not evident if all changes are detected by the 
human operator. For these reasons the development of an automatic change detection algorithm would be 
very proftable as map production costs could be reduced dramatically. If all changes changes are detected 
automatically the human stereo operator could automatically "‘jump"’ from one potential change to another 
only using time collecting the change and not wasting time searching for changes. 

This report presents a new method for automatic change detection. The algorithm is based on an iterated 
version of an established method in multivariate statistics, namely canonical correlation analysis. The algo-
rithm has been applied to a representative Danish suburban test area of 1x1 km2 and the outcome of this 
investigation is presented. 

Contact information: 

Allan Aasbjerg Nielsen 
aa@space.dtu.dk 

Poul Frederiksen (KMS) 
pof@kms.dk 

Brian Pilemann Olsen (KMS) 
bpo@kms.dk 
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2 Introduction 

In almost all areas of our society today, topographic data and geo-spatial map databases play a major role. 
This is valid on a global as well as on a local level. Monitoring pollution and changes of climate are examples 
of applications where worldwide geo-spatial data is required. At a local level there is an increased demand on 
up-to-date information for planning and decision-making. 

A map database is only a snapshot or a status of the landscape or area it represents. As the landscape 
changes over time due to e.g. construction work, the maps describing the area gets outdated corresponding 
to the degree of change, and as time goes by the database slowly degenerates and gets more and more 
untrustworthy. 

Updating geo-spatial map databases to refect continuous changes is a major task, which has previously been 
carried out either as a full manual re-mapping of the total area in question or by updating the existing database. 
Both methods are time consuming and labour-intensive and therefore costly. 

Today national geo-spatial map databases have an update cycle of 3 to 5 years. For most purposes, a 3 to 5 
years update cycle is not suffcient, and therefore the urge for new, more effcient and cost effective revision 
methods is growing. 

The process of updating an existing map database can be divided into 3 steps: 

1. Change detection 

2. Classifcation of the changes detected 

3. Finally registration and updating of the database 

Change detection and classifcation of changes are the most complicated and expensive tasks of the updating 
procedure, and thus much can be saved if these can can be more or less automated. 

This report deals with the problem of automating the change detection step in the revision process, especially 
looking for changes in the building layer. 

3 Related work 

Many research organisations have in past years spent time and effort trying to develop methods that could 
automate or ease the change detection process. 

Baltsavias (Baltsavias, 2004) gives a thorough overview. 

Skriver et al (Skriver et al., 2000) investigate how airborne Synthetic Aperture Radar (SAR) data can be used 
for topographical mapping. 

Knudsen and Olsen (Knudsen and Olsen, 2003; Olsen, 2004; Olsen et al., 2002) have described algorithms 
for change detection based on pixel-wise classifcation comparing digital aerial images to existing vector 
database. The main focus is on detecting changes in the building layer. 

The non-proft organisation EuroSDR (http://www.eurosdr.net) has hosted numerous projects concerning 
change detection: 

• Detection of Unregistered Buildings for Updating 2D Databases (EuroSDR, 2009) 

• Evaluation of Building Extraction (EuroSDR, 2006) 

• Change Detection (EuroSDR, 2006) 

• Automated Extraction, Refnement, and Update of Road Databases from Imagery and Other Data (Eu-
roSDR, 2006) 
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4 Methods 

Change over time between two multispectral images is here detected by means of the IR-MAD method (Canty 
and Nielsen, 2008; Nielsen, 2007). This method builds on an iterated version of an established method in 
multivariate statistics, namely canonical correlation analysis, see below for details. It fnds orthogonal (i.e., 
uncorrelated) linear combinations of the multivariate data at two time points that have maximal correlation. 
These linear combinations are called the canonical variates (CV) and the corresponding correlations are 
called the canonical correlations. There is one set of CVs for each time point. The difference between the two 
set of CVs represent the change between the two time points and are called the MAD variates or the MADs 
for short. MAD is an acronym for multivariate alteration detection. (Alteration here means change and has 
nothing to do with for example hydrothermal alteration known from geology.) 

The sum of the squared MAD variates (properly normed to unit variance) gives us change variables that will 
ideally follow a chi-squared (χ2) distribution with p degrees of freedom for the no-change pixels; p is the 
number of spectral bands in the image data. This image is called the “change image” below. The chi-squared 
image is the basis for calculating an image of probability for no-change, i.e., the probability for fnding a higher 
value of the chi-squared statistic than the one actually found. This image is the weight image in the iteration 
scheme mentioned above. Iterations stop when the canonical correlations stop changing. 

If the chi-squared image is thresholded at a very high percentile in the chi-squared distribution we obtain a 
binary change image where change is indicated by the colour white. If we use the opening operation from 
mathematical morphology on this image, we obtain a binary change image where the colour white indicates 
signifcant change in large objects. This image is called the “signifcant change image” below. The sizes of 
the objects thus detected depend on the size of the structuring element applied in the opening process. 

4.1 Canonical Correlation Analysis, CCA 

Consider frst two p-band multispectral images of the same scene acquired at different times, between which 
acquisitions ground refectance changes have occurred at some locations, but not everywhere. Assume 
without loss of generality that both images have pixel intensities with zero mean. Representing observations 
(pixel intensities) in the frst multispectral image by a random vector X = [X1 . . .Xp]

T , we can make a linear 
combination of the intensities for all spectral bands, creating a scalar image characterized by the random 
variable U = aT X . The vector of coeffcients a is as yet unspecifed. We do the same for the second image, 
represented by Y, forming the linear combination V = bTY , and then look at the scalar difference image 
U −V . This combines all of the change information into a single image, but one of course still must choose 
the coeffcients a and b in some suitable way. In (Nielsen et al., 1998) it is suggested that they be determined 
by applying standard Canonical Correlation Analysis (CCA), frst described by Hotelling in 1936, to the images 
X and Y . This leads to the coupled generalized eigenvalue problems 

Σ12Σ
−1 (1)22 Σ21a = ρ2

Σ11a 

Σ21Σ
−1 (2)11 Σ12b = ρ2

Σ22b 

where Σ11 and Σ22 are the variance-covariance matrices of the two images and Σ12 = Σ21 
T is the inter-image 

covariance matrix. Solution of the eigenvalue problems generates new multispectral images U = [U1 . . .Up]
T 

and V = [V1 . . .Vp]
T , the components of which are called the canonical variates (CVs). The CVs are ordered 

by similarity (correlation) rather than, as in the original images, by wavelength. The canonical correlations 
ρi = corr(Ui,Vi), i = 1, . . . , p, are the square roots of the eigenvalues of the coupled eigenvalue problem and 
ai and bi, i = 1, . . . , p, which determine U and V from X and Y , are the eigenvectors. The pair U1,V1 is 
maximally correlated, the pair (U2,V2) is maximally correlated subject to being orthogonal to (uncorrelated 
with) both U1 and V1, and so on. 
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4.2 Multivariate Alteration Detection, MAD 

Performing paired differences (in reverse order) then generates a sequence of transformed difference images 

Mi = Up−i+1 −Vp−i+1, i = 1, . . . , p, (3) 

referred to as the MAD variates or the MADs, having nice statistical properties which make them very useful 
for visualizing and analyzing change information. Thus for instance they are uncorrelated, 

cov(Mi,Mj) = 0, i =6 j, (4) 

and have, by virtue of our chosen ordering, successively decreasing variances given by 

var(Mi) = σM 
2 

i 
= 2(1 − ρp−i+1). (5) 

The fact that several additions and subtractions go into determining the MAD variates means that, from the 
Central Limit Theorem, they are ideally normally distributed. The usefulness of the MAD variates for automatic 
radiometric normalization stems from the fact that they are invariant under affne transformations of either or 
both of the original images. 

4.2.1 Iterated MAD 

Now consider two images of a scene, acquired at different times under similar illumination conditions, but for 
which no ground refectance changes have occurred whatsoever. Then the only differences between them 
will be due to random effects like instrument noise and atmospheric fuctuation. In such a case we would 
expect that the histogram of any difference component that we generate would be very nearly Gaussian. In 
particular, the MAD variates, being uncorrelated, should follow a multivariate normal distribution with diagonal 
covariance matrix. The MAD variates associated with change observations will deviate more or less strongly 
from such a multivariate normal distribution. Therefore, in the presence of genuine change, we expect an 
improvement of the sensitivity of the MAD transformation if we place emphasis on establishing an increasingly 
better background of no change against which to detect change. This can be done in an iteration scheme in 
which observations are weighted by the probability of no change, as determined on the preceding iteration, 
when estimating the sample means and covariance matrices which determine – via CCA – the MAD variates 
for the next iteration. The probability weights may be obtained by examining the MAD variates directly. Let the 
random variable Z represent the sum of the squares of the standardized MAD variates 

� �2p MiZ = ∑ , (6)
σMii=1 

where σMi is given by Equation 5. Then, since the no-change observations are normally distributed and un-
correlated, their realizations should be chi-square distributed with p degrees of freedom (distribution function 
Pχ2;p(z)). For each iteration, the observations z (realizations of the random variable Z) can then be given 
weights determined by the chi-square distribution, namely 

Pr(no change) = 1 − Pχ2;p(z). (7) 

Pr(no change) is the probability that a sample z drawn from the chi-squared distribution could be that large or 
larger. A small z implies a large probability of no change. Other weighting schemes are possible, for instance 
using unsupervised classifcation of change/no-change observations. Iteration of the MAD transformation will 
continue until some stopping criterion is met, such as lack of change in the canonical correlations ρi, i = 
1, . . . , p. 
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5 Data 

Kort & Matrikelstyrelsen (KMS) has delivered to Institut for Rumforskning og -teknologi, DTU (DTU Space) 
data in the form of 25 orthophotos consisting of 1 km by 1 km 10 cm pixels. Each of the 25 images is 10,000 
by 10,000 pixels, 8 bit in each of the colours red, green and blue. Data exist from 2007, 2008 and 2009 in 
ECW and TIFF formats. 

Of the data delivered by KMS we concentrate on the 1 km by 1km square termed 6168_726. We note that the 
2007 and the 2009 data are acquired before foliation, the 2008 data after. Also, judged visually, the parallax 
differences seem smaller between the 2007 and the 2009 data than between the other possible time point 
pairs. This makes the 2007 and 2009 data the best for an initial study. Work is done on the uncompressed 
TIFF data only. 

6 Results 

Each of the 25 datasets takes up 300 MB of space. An implementation of the IR-MAD method in EN-
VI/IDL (Canty, 2010) allows for practically any-size-images. Each iteration takes just over 5 minutes on a 
32 bit, 2.00 GHz Intel Core 2 CPU laptop with 2.50 Gbyte, 998 MHz memory, typically around 15 iterations 
are needed. 

The foat chi squared image (the “change image”) output from IR-MAD was stored in byte format stretched 
linearly from 16.269 (the 99.9% percentile of the corresponding no-change distribution) and 1,000 (a some-
what arbitrary choice). The threshold in this byte image was found automatically in Matlab by means of the 
graythresh command. Following this the opening was done by means of Matlab command imopen with a disk 
shaped structuring element with radius 10 to obtain the “signifcant change image”. 

Figure 1 illustrates results from change analysis of the 6168_726 square on time point pairs 2007/2009. Upper 
left panel shows the full 10,000 by 10,000 scene for the frst time point (2007). Upper right panel shows the 
full 10,000 by 10,000 scene for the second time point (2009). Lower left panel shows the full 10,000 by 10,000 
scene chi-squared, i.e., the “change image”. Finally the lower right panel shows the full 10,000 by 10,000 
scene chi-squared image thresholded and opened, i.e., the “signifcant change image”. 

As can be seen from fgure 1, all signifcant changes have been detected. 

Figure 2 shows a closeup of the area marked by a red square in the lower left corner of each panel in fgure 
1. Upper left panels shows the zoomed area for the frst time point. Upper right panel shows the zoomed 
area for the second time point. The lower left panel shows the zoomed area for the for chi-squared, i.e., the 
“change image”. Finally the lower left panel shows the zoomed area for the chi-squared image thresholded 
and opened, i.e., the “signifcant change image”. 

Taking a closer look at the signifcant change map (LR panel) in fgure 2, it can be realised that the two new 
buildings have been detected, but it can also be seen that the detections are not perfect. Additionally a car 
has been pointed out as “new”, and some containers depicted as removed. 

Further results can be found in appendix A to C 

Appendix A shows nine additional examples taken from various positions in the time point pairs 2007/2009. 
Appendix B shows examples of registration problems between time point pairs 2007/2008. Appendix C shows 
examples of registration problems between 2008/2009. 

7 Conclusions 

Generally the method seems to give few false positives (i.e., indications of change where actual change does 
not occur) and false negatives (the opposite, i.e., no indication of change where change actually does occur). 
A false positive is sometimes termed a type I error, a false alarm or an α error. A false negative is sometimes 
termed a type II error or a β error. 
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Figure 1: Results for 6168_726. Changes between years 2007 and 2009. UL: Full scene 2007. UR: Full 
scene 2009. LL: Change image. LR: Signifcant change image 

We see that the main problem, when it comes to false alarms, is due to mis-registrations caused by the 
fact that the orthophotos are produced based on a terrain model and not a surface model. Better results for 
change detection would therefore be obtained by working on true orthophotos rather than orthophotos, i.e., 
orthophotos that are produced in a process which allows not only for the terrain model but for the surface 
model including buildings. 

A change from for example bare soil to a new building with a soil coloured roof (or vice versa) is likely to be 
missed, i.e., produce false negatives. This could be handled by including height data. The largest radiometric 
changes are related to the presence and absence of water (typically seen in swimming pools being empty or 
full). 

Specular refection (mirroring) due to unfortunate geometry of the illumination source (the sun) relative to the 
sensor at one of the two time points gives rise to false positives. The presence or absence of large cars, 
containers, campers etc. at one of the two time points gives rise to false positives (when the goal is to fnd 
changes in what is to become the building theme of a map vector database). 
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Figure 2: Results for the zoomed area from 6168_726. Changes between years 2007 and 2009. UL: Zoomed 
area from the 2007 scene. UR: Zoomed area from the 2009 scene. LL: Change image. LR: Signifcant change 
image 

7.1 Future work 

Future work could wisely include: 

1. work on true orthophotos, 

2. more thorough investigations of the change detected, i.e., the number of and nature of false positives 
and false negatives, 

3. experiments on the threshold applied in the chi-squared image, 

4. experiments on the size of the structuring element in the opening, 

5. attempts to establish a typical variance-covariance structure for two consecutive years pre-foliation air-
borne 10 cm 3, 4 or 5 band image data. If this can be done, all we need to store is the eigen vectors 
and the correlations after iterations for a representative time point pair and use those for all future time 
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point pairs. This would give an enormous speed-up (from the present just over 5 minutes per itera-
tion, 1̃5 iterations, to the time it takes to do the projections and calculate the chi-squared image) and 
thus make the method more operational for semi-automatic map vector database update based on true 
orthophotos. 

6. use of higher radiometric resolution data, 

7. use of data including the infra-red spectral band, and 

8. use of height data (dsm). 
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A Examples – time point pairs 2007/2009. 
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Figure 3: Example 1 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 scene. 
UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. LL: 
Change image. LR: Signifcant change image. 
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Figure 4: Example 2 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 scene. 
UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. LL: 
Change image. LR: Signifcant change image. 
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Figure 5: Example 3 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 scene. 
UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. LL: 
Change image. LR: Signifcant change image. 
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Figure 6: Example 4 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 scene. 
UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. LL: 
Change image. LR: Signifcant change image. 
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Figure 7: Example 5 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 scene. 
UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. LL: 
Change image. LR: Signifcant change image. 
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Figure 8: Example 6 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 scene. 
UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. LL: 
Change image. LR: Signifcant change image. 
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Figure 9: Example 7 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 scene. 
UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. LL: 
Change image. LR: Signifcant change image. 
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Figure 10: Example 8 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 
scene. UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. 
LL: Change image. LR: Signifcant change image. 
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Figure 11: Example 9 for area from 6168_726. Changes between years 2007 and 2009. UL: The 2007 
scene. UR: Change image. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2009 scene. 
LL: Change image. LR: Signifcant change image. 
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B Examples – registration problems, time point pairs 2007/2008. 

For time point pairs 2007/2008, no thresholded and opened chi-squared images or “signifcant change images” 
are shown. All red squares and zooms for each example are linked so that they cover the same spatial region. 
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Figure 12: Example of registration problems. Changes between years 2007 and 2008. UL: The 2007 scene. 
UR: The 2008 scene. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2008 scene. LL: 
Full scene change image. LR: Zoomed area change image. 
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C Examples – registration problems, time point pairs 2008/2009. 

For time point pairs 2008/2009, no thresholded and opened chi-squared images or “signifcant change images” 
are shown. All red squares and zooms for each example are linked so that they cover the same spatial region. 
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Figure 13: Example of registration problems. Changes between years 2008 and 2009. UL: The 2007 scene. 
UR: The 2008 scene. ML: Zoomed area from the 2007 scene. MR: Zoomed area from the 2008 scene. LL: 
Full scene change image. LR: Zoomed area change image. 
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