

DK CORS Stability Analysis

Georgiana Alexandra Sandulescu & Kristian Keller

GeoNotes 6 Version 1 2022-06-01

	Indhold	
GeoNotes 6. Version 1, 2022-06-01		
Georgiana Alexandra Sandulescu & Kristian Keller:		
DK CORS Stability Analysis	DK CORS Stability Analysis	11
Frontpage: Levelling analysis of GNSS station SULD. Excerpt from figure 2.2 in appendix 3.	Appendix 1. BUDP	12
This report was written during G.A. Sandulescu's internship at SDFE in 2018.	Appendix 2. SMID	20
	Appendix 3. SULD	28
The GeoNotes Series is published by Styrelsen for Dataforsyning og Infrastruktur/Agency for Data Supply and Infrastructure (SDFI), Copenhagen, Denmark.	Appendix 4. ESBH	36
The publications in this series include working papers and	Appendix 5. ESBC	42
preliminary reports from ongoing projects.		
Hence, results and conclusions reported may be tentative	Appendix 6. GESR	49
and subject to change. Opinions expressed do not neces- sarily reflect the position of SDFI.	Appendix 7. HIRS	57
	Appendix 8. FERR	65
	Appendix 9. HABY	73
	Appendix 10. TEJH	81
	Appendix 11. FYHA	89
	Appendix 12. Stability algorithm testing	97

Copyright by SDFI and the author(s). This work is licensed under the Creative Commons Attribution 4.0 International License.

Introduction

During the latest decades, GNSS technologies have been developing with an accelerating pace, gaining ground in a broad spectrum of applications, from surveying, mapping and GIS to climate change studies or even military use. Acknowledging the importance and the necessity of contributing to this global technological phenomenon, Denmark started to focus on the implementation and maintenance of a solid and reliable GNSS network that can be employed in various applications.

The Danish Ministry of Energy, Utilities and Climate is in charge of the administration and development of the existent GNSS national network, more specifically through the Spatial References department, within the Data Supply and Efficiency Agency. The GNSS permanent reference stations serve as geodetic infrastructure in Denmark, help connecting the Danish reference frame to the European and global ones, and constitute the basis for many modern research directions, for example the study and development of uplift models. Taking into consideration all these applications of the network makes the importance of checking the stability of the permanent stations and the reliability of the provided data obvious.

This report deals with the problem of stability of the Danish permanent reference stations and with the task of establishing how these stations should be measured, how often the measurements campaigns should be carried out, and which analysis/models should be employed in the study of the acquired data.

Background and used data

The present study uses data concerning 10 permanent stations from the GNSS network: Buddinge (BUDP), Smidstrup (SMID), Suldrup (SULD), Esbjerg (ESBC and ESBH)¹, Gedser (GESR), Hirtshals (HIRS), Ferring (FERR), Sj. Odde (HABY), Tejn (TEJH) and Fynshav (FYHA) – see Figure 1.

Figure 1 – GNSS permanent reference stations in Denmark

¹ Due to the instability of the ESBH station, a newer one was installed in the Esbjerg area – ESBC.

The monitoring of each permanent station is done using an additional number of benchmarks; these can be divided into three categories:

- Security benchmarks (in Danish: *sikringspunkter*)
- Near control benchmarks (in Danish: *nœrkontrol punkter*)
- Remote control benchmarks (in Danish: *fjernkontrol punkter*)²
- Jessen point (in Danish: Jessenpunkt) one of the above points selected to be used as reference for the timeseries

The sikringspunkter are usually located on the concrete foundation of the permanent station, or, in some cases, in the near vicinity of it, and they are constituted of vertical bolts embedded in the concrete (in Danish: *lodret bolt*). The nærkontrol punkter are defined using either vertical bolts or screw pegs (in Danish: *skruepløk*) and they are situated close to the permanent stations at distances of 20-100 m. The fjernkontrol punkter are usually situated at a larger distance – between 1 and 4 km – and many times are a part of the Danish 5D network. A generalized overview of these benchmarks that are meant to be used for the monitoring of the permanent stations can be seen in Figure 2.

Figure 2 – General overview of the benchmarks used for the monitoring of a GNSS permanent reference station

There are three types of data acquired: levelling data (1D), total station measurements (2D) and GNSS measurements (3D). Each category of points mentioned above is measured differently, depending on the benchmark accessibility, as can be seen in Table 1.

Measurement type→	1D	2D	3D
Point type 🗸	Levelling	Total Station	GNSS
GNSS Antenna	х	х	-
Nærkontrol	х	х	х
Fjernkontrol	х	-	х
Bolter i fundament	х	-	-

Table 1 – Types of data acquired in every benchmark

² The rest of the report will use the Danish version of the words defining the benchmark categories (as no English terminology has been adopted at the moment).

From a temporal view, the data distribution for each station can be seen in Table 2.

Station→ Time series ↓	BUDP	SMID	SULD	GESR	HIRS	ESBC	ESBH	FERR	HABY	TEJH	FYHA
1998	-	1D	2D	-	-	-	-	-	-	-	-
1999	1D	2D	1D	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-
2001	1D 2D	1D 2D	1D 2D	-	-	-	-	-	-	-	-
2002	1D 2D	1D 2D	1D 2D	-	-	-	-	-	-	-	-
2003	1D 2D	1D 2D	1D 2D	1D	-	-	-	-	-	-	-
2004	1D 2D	1D 2D 3D	1D 2D	1D 2D	1D 2D	-	-	-	-	-	-
2005	1D 2D 3D	-	-	-	-						
2006	1D 2D 3D	1D 2D 3D	1D 3D	1D 2D 3D	1D 2D 3D	1D 2D 3D	1D 2D 3D	-	-	-	-
2007	1D 2D 3D	-	-	-	-						
2008	3D	3D	3D	1D 2D	1D 2D	1D 2D	1D 2D	-	-	-	-
2009	1D 2D	1D 2D	1D 2D	3D	3D	3D	3D	1D 2D 3D	-	-	-
2010	-	1D 2D 3D	1D 3D	-	1D	1D 2D	1D 2D	1D 2D	1D 2D 3D	2D	-
2011	1D 2D 3D	2D 3D	2D	1D 2D 3D	-	-	-	3D	1D 2D 3D	2D 3D	2D
2012	1D	3D	1D 2D 3D	1D	1D 2D 3D	1D	1D 2D	1D 3D	1D	1D	1D 2D 3D
2013	2D	3D	-	1D	1D	1D 2D 3D	1D 2D 3D	1D 3D	1D 3D	1D 3D	1D 2D 3D
2014	2D 3D	3D	-	1D 2D 3D	1D	1D	1D 2D	1D	1D 3D	1D 2D 3D	1D 3D
2015	-	3D	1D 3D	1D	1D 3D	-	-	1D 3D	-	-	-
2016	-	1D 3D	-	-	-	1D 3D	1D 3D	-	-	-	1D 3D
2017	3D	3D	-	3D	-	-	-	-	3D	3D	-

Table 2 - Complete list of data used in the present study foreach of the GNSS permanent stations

It is important to emphasis that the actual GNSS antenna requires special measurement procedures. The purpose of these measurements is to determine the position of a point defined as a vertical bolt or, in some cases, as the ARP (Antenna Reference Point). In order to determine the height of each station, the *opføring* procedure is used.³ This can be performed both trigonometrically and geometrically, depending on the type of the point definition. Thus some of the stations are measured only trigonometrically (BUDP, SMID, SULD, ESBH), some are measured only geometrically (FERR, HABY, TEJH, FYHA), whereas for the rest of them (ESBC, GESR, HIRS) both procedures have been employed.

Methods

Several methods have been used in order to assess the stability of the GNSS stations and of the corresponding point group implicitly:

• Regression analysis

Linear regression analysis is used in order to determine eventual trends and to approximate the annual height variation.

• Global congruence test

The global congruence test is a geometric comparison analysis, based on two temporal stages of the same object/network. It is commonly used to determine movements and deformations of structures, by employing geodetic monitoring measurements; in this particular case it provides information about the relative displacements occurred in between the nærkontrol points.

• Strain analysis

The strain analysis is derived from quantum mechanics and focuses on the displacements of the benchmarks relative to one another. The method provides information about the possible tensions present in a local area and shows which of the network points are

³ The opføring procedure is performed according to the internal guidelines of the agency.

predisposed towards instability.

• "A-test" developed by SDFE

The mathematical description of the algorithm can be found in one of the following sections **Closer look to "Atest".**

More details referring to each method will not be presented in this report, but can be found in the references. The conclusions presented below rise from a combination of the performed analyses, together with a visual assessment of all the plots and representations. Comparing the stations/benchmarks behavior broadens the understanding of the process and helps identifying some patterns. The process of assessing the stability of the GNSS stations remains unfortunately very manual; many times insight from the surveyors is needed, data has to be discarded etc.

Observations about acquired data

This sections goal is to present the overall results of the analysis. The individual results obtained for each station can be found in the appendices.

Levelling data can be used in different analyses; a very useful feature would be a more detailed description of the

measurement campaign / physical conditions at the time of the measurements. This could serve as an argument in eliminating some heights from the analysis and could also help in a more accurate determination of the heights uncertainty.

Example: the 2009 levelling campaign provides unreliable heights for the station and the corresponding benchmarks, due to the weather, observer etc. These heights should be discarded in the assessment.

Total station data can be used in some classical deformation analyses. Acquiring this type of data from time to time (every 6 years) could provide insight into the absolute and relative deformations that can appear. Within an uncertainty of ± 1 mm, assessing the planimetric coordinates obtained from total stations measurements could indicate displacements.

Example: in the case of SMID station, the last determined coordinates date back to 2013 and they indicate a significant planimetric displacement (see Appendix 2 - Figure 3.1). A new determination of the point would help eliminate the doubt in this case.

GNSS data (coordinates obtained after measuring in the nærkontrol points) is very difficult to use in statistical analyses. If no way to employ this data is found, it shouldn't

be measured anymore. If the 3D time series will be continued, they should be synchronized with the 2D measurements (many time historical coordinates cannot be compared because the measurements have been acquired in different years).

Final comments and recommendations

Based on all the performed analyses and on the comparison to the other stations/points behavior, the following conclusions can be drawn.

Stations ESBC, HIRS, FYHA, FERR, TEJH and HABY are considered stable.

- They can be measured with a larger than 3 years interval (possibly every 5 or 6 years).
- Total station measurements can be also made every 5 or 6 years. Even if at the moment there is a gap in the 2D time series, the data would be useable.
- Points to pay attention to in future campaigns: ESC1 (ESBC), HIR3 (HIRS), FYH2 (FYHA), HAB3 (HABY). There may not be anything wrong with these points, but a careful future determination (eventually some physical

assessment of the points in the field) would eliminate any concerns.

Station **GESR** stability should be doubted.

- A subsiding trend is present during the last years (see Appendix 6 – Figure 2.4). An immediate measurement campaign would eliminate these concerns and would strengthen the decision regarding this station.
- The nærkontrol points GED3 and GED4 also seem to be unstable (see Appendix 6 Figure 2.9, Figure 2.10). A decision should be made.

Station **SULD** is considered stable, but there are problems with the time series.

- Point SUL1 should be eliminated from the nærkontrol group.
- The Jessenpunkt is obviously unstable. All the analyses should be repeated after the change of the Jessenpunkt / recalculation of heights.
- If the influence of the Jessenpunkt is eliminated (see Figure 3) the station can be assessed as stable. Thus it can be measured with a larger than 3 years interval (possibly every 5 or 6 years).

Figure 3 – SULD station variation pattern after eliminating the influence of the unstable Jessenpunkt

In the case of **SMID** and **BUDP** stations, no clear conclusions can be drawn.

- Both stations should be measured again with the same frequency or possibly more (two consecutive years) until a conclusion is achieved.
- In the case of SMID this would also be an advantage because it is the station with the largest time series and the most measurements of each type.
- In the case of BUDP, no pattern can be identified in the benchmarks/station variation; furthermore, the twin station should somehow be included in the analysis.

Closer look to "A-test"

The "A-test" is an algorithm developed within SDFE and employed for assessing the stability of a geodetic benchmark. This particular algorithm is applied only to the levelling data.

According to the description of the algorithm, a point will be considered stable if one of the two following two conditions is fulfilled:

- $\max z \min z \le 0.4 mm$
- for all differences: $|z_i z_j| \leq \mathbf{3} \cdot \sqrt{s_i^2 + s_j^2}$

A simpler and more visual description can be done as follows:

• The first condition implies that all the heights of the point are located in an interval not larger than the ignore limit (here 0.4 mm). An example can be seen in Figure 4, where the three green horizontal lines help marking this interval: the middle line depicts 0.0 mm variation, whereas the exterior lines depict -0.2 mm, respectively +0.2 mm.

Figure 4 – Linear regression and stability check for point 155-06-09077

The second condition includes the mean error in the analysis. The point is considered stable if the 0.0 mm variation line (the middle horizontal line) intersects all the error bars (which represent 3 times the mean error for each elevation). An example can be seen in Figure 5, where the point is considered stable due to the second condition.

Figure 5 – Linear regression and stability check for point 61-07-00009

The parameters depicted with red are manually chosen, as input data before running the code:

- The first condition is related to the *-ilim* input parameter described in the code as *"-ilim <ignore_limit> Specify the 'ignore limit' for stability tests in [mm]."*
- The second condition is related to the *-sdi* input parameter described in the code as *"-sdi <ignore_limit>* Specify the 'error interval' for stability tests, e.g. 2.0"

Unfortunately using the same parameters for the GNSS stations analysis provides only negative results. Thus the reasoning behind choosing these limits has to be modified. For a better overview of the changes which appear when the ignore limit is modified, the analysis has been applied repetitively for all the reference stations and neighboring points.

The results from the SULD (Appendix 12 - Table 3) and ESBH (Appendix 12 - Table 4) stations will not be included in this assessment. In the case of SULD, there is a problem with the Jessenpunkt, thus all the points are considered unstable regardless of the chosen ignore limit. In the ESBH case, instability was expected. For the rest of the stations, the obtained results are presented in Appendix 12 - Table 1, Table 2, Table 5 to Table 11. The following statistics only refer to the last 9 stations mentioned above (where no visible problems have been observed beforehand): SMID, BUDP, ESBC, HIRS, GESR, HABY, FYHA, FERR and TEJH.

Туре	Stable	Procent
GPS Antenna	0/9	0.00%
Bolter i fundament	13 / 34	38.24%
Nærkontrol	11/27	40.74%
Fjernkontrol	7/9	77.78%

Table 3 – Test results for the A-test using 0.4 mm as an ignore limit

None of the stations are considered stable when using the ignore limit 0.4 mm. More than half of the concrete bolts and nærkontrol points are also considered unstable. The fjernkontrol points appear to be stable; however this case will be treated separately.

Based on a purely experimental assessment, the ignore limit used for the GNSS stations should not be the same as the one used for the other point categories. This approach also makes sense considering the measurement process in the case of the actual stations: difficult setting, indirect measurements etc.

Imposing an ignore limit of **1.5 mm for the GNSS** reference stations and one of **0.8 mm for the rest of the** points, the following results are obtained:

Туре	Stable	Procent
GPS Antenna	5/9	55.56%
Bolter i fundament	20/34	58.82%
Nærkontrol	13/27	48.15%
Fjernkontrol	7/9	77.78%

Table 4 – Test results for the A-test using 1.5 mm as an ignore limit for the station and 0.4 for the other types of benchmarks

The reasoning behind choosing these two parameters remains a debatable issue; stronger arguments should be found, rather than using experimental practice.

In the case of the fjernkontrol points, the analysis doesn't seem to provide reliable results. 7 out of the 9 used fjernkontrol points are always stable, regardless of the chosen ignore limit. This particular behavior is due to the large mean errors: as the fjernkontrol points are situated at a considerable distance from the other points in the analysis, the obtained mean errors are large and always fulfill the second condition in the algorithm.

In conclusion, the algorithm should not be used for the fjernkontrol points. Moreover, the ignore limits should be modified (possibly 1.5 mm for GNSS stations and 0.8 mm for other categories).

Future work

All the insight provided by the analyses presented in the present report has to be combined and / or coordinated with the other types of models employed for the study of the permanent GNSS reference stations behavior.

A superficial comparison of the levelling and total station data results with the GNSS time series for each of the permanent stations shows that many of the displacements and variation patterns can also be depicted in the GNSS time series. Furthermore, if the absolute uplift model would also be included in the assessment, more insight would be available.

Thus, the above recommendations are only viable until further research on the matter is carried out. If the same results can be obtained by using exclusively GNSS data from the stations, classical levelling and total station measurements could be eliminated.

References

- 1. Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis; Allan Aasbjerg Nielsen
- 2. Geodetic deformation analysis, Cüneyt Aydın (YTU Geodesy Division)
- 3. Ground-Based Deformation Monitoring, Axel Ebeling

- 4. GNSS time series for permanent GNSS stations in Denmark, Shfaqat Abbas Khan, 2018
- 5. Absolute uplift model calculations, DTU Space, 2016

APPENDIX 1 - BUDDINGE [BUDP]

Tidserie: 81007

GPS Antenna	BUDP 1-13-00829	
Nærkontrol	BUD1 1-13-00001	
	BUD2 1-13-00830 81007	JessenPunkt
	BUD3 1-13-00831	
	BUDD 1-13-00821 1-13-00826 27658 9899/1	
Bolter i fundament	1-13-09113	
	1-13-09114	
	1-13-09115	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- All points around BUDP station are considered unstable by the A-test (even with higher limit parameters).
- Regression analysis provides a significant trend for the nærkontrol point BUD3 (1-13-00831): the point is subsiding with 0.21 ± 0.02 mm/year.
- In terms of planimetric coordinates: there seems to be displacements, especially on the Northing direction.
- The congruence test shows relative displacements between the nærkontrol points.
- Strain analysis indicates predisposition to instability.

- Initial plots
- Regression analysis

BUDDINGE (BUDP) Linear Regression analysis results

_		2 parameters regression model (linear fitting)					
туре	Punkt	θ_1 [m/year]	σ _{θ1} [m/year]	t - value	p -value		
GPS Antenna	BUDP 1-13-00829	-0.000190	0.000114	-1.658600	0.131580		
	1-13-09113	-0.000075	0.000029	-2.570300	0.030172		
Bolter I fundament	1-13-09114	-0.000071	0.000028	-2.511800	0.033210		
	1-13-09115	-0.000064	0.000024	-2.679200	0.025239		
	BUD1 1-13-00001	-0.000113	0.000022	-5.166000	0.002083		
Nærkontrol	BUD3 1-13-00831	-0.000211	0.000022	-9.592600	0.000005		
	BUDD 1-13-00821	-0.000314	0.000060	-5.198900	0.002017		

Statistically significant results --> Linear Regression

Туре	Point	Behaviour	Variation [mm/year]	Std [mm/year]
Nærkontrol	BUD3 1-13-00831	\downarrow	-0.21	0.02

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant		Station: BUDP						
Constant	Antenna	Sik	ringspunk	ter		Nærkontro	-	
value [mm]	BUDP	9113	9114	9115	BUD1	BUD3	BUDD	
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	
1	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	
1.5	ustabil	stabil	stabil	stabil	ustabil	ustabil	ustabil	
2	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	

Tidserie 81007 [Jessenpunkt BUD2 (1-13-00830)]

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test

16

- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Figur 3.9

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability									
	dN BUD2	-2.80	2.80	>		Unstable									
	dE BUD2	1.76	1.76	<				Unstable							
2002	dN BUD3	2.61	2.61	>	2.21	Unstable									
2005 VS 2004	dE BUD3	1.50	1.50	<	2.51	Unstable									
	dN BUDD	-1.87	1.87	<		Unstable									
	dE BUDD	-2.79	2.79	>		Unstable									
	dN BUD2	0.22	0.22	<		Unstable									
	dE BUD2	2.96	2.96	>		Unstable									
2002 1/2 2005	dN BUD3	1.52	1.52	<	2 21	Unstable									
2003 VS 2003	dE BUD3	-3.04	3.04	>	2.51	Unstable									
	dN BUDD	-2.84	2.84	>		Unstable									
	dE BUDD	0.39	0.39	<		Unstable	Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability		
	dN BUD2	-2.16	2.16	<		Unstable		dN BUD2	-1.39	1.39	<		Stable		
	dE BUD2	3.71	3.71	>	> > < > 2.31	Unstable		dE BUD2	1.16	1.16	<				
2002 vr 2006	dN BUD3	3.32	3.32	>		> 2.21	Unstable	2003 vs 2009	dN BUD3	1.45	1.45	<	2.31	Stable	
2003 VS 2006	dE BUD3	-1.07	1.07	<		Unstable		dE BUD3	0.47	0.47	<				
	dN BUDD	-3.71	3.71	>		Unstable		dN BODD	-1.21	1.21	<		Stable		
	dE BUDD	-2.02	2.02	<		Unstable		dE BUDD	-1.37	1.37	<				
	dN BUD2	1.11	1.11	<		Unstable		dN BUD2	-3.59	3.59	>		Unstable		
	dE BUD2	3.30	3.30	>		Unstable		dE BUD2	11.95	11.95	>				
2002 ve 2007	dN BUD3	1.19	1.19	<		Unstable	2003 vs 2012	dN BUD3	8.73	8.73	>	2.31	Unstable		
2003 VS 2007	dE BUD3	-4.37	4.37	>	2.51	Unstable		dE BUD3	-7.24	7.24	>				
	dN BUDD	-3.11	3.11	>		Unstable			-11.75	2.04			Unstable		
	dE BUDD	1.32	1.32	<		Unstable			-5.04	3.04					
									-2.10	2.10			Unstable		
									5.45	5.45					
							2003 vs 2013	dE BUD3	-4.82	4.82		2.31	Unstable		
									-7.47	7.47					
								dF BUDD	-1.74	1.74	<		Unstable		
								dN BUD2	-4.02	4.02	>				
								dE BUD2	11.15	11.15	>		Unstable		
							2002	dN BUD3	8.54	8.54	>	2.24	the state is the		
							2003 VS 2014	dE BUD3	-5.99	5.99	>	2.31	Unstable		
								dN BUDD	-11.00	11.00	>				

-3.53

dE BUDD

3.53

>

Figur 3.10

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

Principal strain components for a 2D deformation

ε _{NN}	-0.000004			
ε	0.000007			
٤ _{simple}	-0.000013			
ε _{pure}	-0.000006			
ε _{MAX}	0.000016	+ extension	1.6 ppm	
ε _{MIN}	-0.000013	- contraction	-1.3 ppm	
20	53.8337			
θ	226,9169	direction of the maximum r	rincipal axis, clockwise from N-ax	cis

APPENDIX 2 - SMIDSTRUP [SMID]

Tidserie: 81006

GPS Antenna	SMID 117-05-00810	
	SKR2 117-05-00806	
Norkontrol	SKRP 117-05-00807	
Nærkontrol	SKR3 117-05-00808 ->	JessenPunkt
	SKR4 117-05-00809	
Fiornkontrol	VEJL G.I.2210 117-06-00007	
FJEIIIKOIItiOI	KORE G.I.2294 114-02-00808	
Poltori	117-05-9058	
fundament	117-05-9059	
runuament	117-05-9060	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- Most of the points are considered unstable according to the A-test.
- The nærkontrol point SKR2 (117-05-00806) is unstable, subsiding with a rate of approximately 0.10 ± 0.02 mm/year.
- In terms of planimetric coordinates: check 2013. Maybe measure one more time with TS.
- The congruence test confirms some relative displacements between the nærkontrol points in 2013.
- Strain analysis doesn't indicate predisposition to local instability.

2. NIVELLEMENT

- Initial plots
- Regression analysis

Figur 2.1

SMIDSTRUP (SMID) Linear Regression analysis results

_		2 parameters regression model (linear fitting)						
Туре	Punkt	θ ₁ [m/year]	σ _{θ1} [m/year]	t - value	p -value			
GPS Antenna	SMID 117-05-00810	-0.000040	0.000061	-0.662070	0.526540			
Bolter i fundament	117-05-09058	0.000042	0.000010	4.051020	0.002320			
	117-05-09059	0.000044	0.000010	4.550800	0.001057			
	117-05-09060	0.000043	0.000011	4.064440	0.002270			
	SKR2 117-05-00806	-0.000101	0.000016	-6.489610	0.000070			
Nærkontrol	SKRP 117-05-00807	-0.000018	0.000013	-1.361060	0.203380			
	SKR4 117-05-00809	0.000037	0.000009	4.139560	0.002013			
Figurekontrol	VEJL 117-06-00007 G.I.2210	Not en	ough input data (need mo	re heights in the tin	ne series)			
FJERNKONTFOL	KORE 114-02-00808 G.I.2294	-0.000317	0.000277	-1.142670	0.457670			

Statistically significant results --> Linear Regression

Type	Point	Behaviour	Variation [mm/year]	Std [mm/year]	
Nærkontrol	SKR2 117-05-00806	\downarrow	-0.10	0.02	

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant	Station: SMID										
Constant	Antenna	Sikringspunkter			I	Nærkontro	ŕ	Fjernkontrol			
value [mm]	SMID	9058	9059	9060	SKR2	SKRP	SKR4	VEJL	KORE		
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil		
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil		
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil		
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil		
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	ustabil	stabil	stabil		
1	ustabil	ustabil	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil		
1.5	ustabil	stabil	stabil	stabil	ustabil	stabil	stabil	stabil	stabil		
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test

24

- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Figur 3.6

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

		Stage 1 - 2003	3		Stage 2 - 2005				
From	To Horizontal directions		Average	From	То	Horizontal	Horizontal directions		
	SKRP	313.5828	313.5838	313.5833		SKRP	103.3918	103.3929	103.3924
SKR2	SKR3	341.4710	341.4720	341.4715	SKR2	SKR3	131.2754	131.2763	131.2759
	SKR4 373.3133 373.3112 373.3123	SKR4	163.1127	163.1119	163.1123				
	SKR2	64.5091	64.5086	64.5089	SKRP	SKR2	239.1581	239.1554	239.1568
SKRP	SKR3	319.1620	319.1615	319.1618		SKR3	93.8049	93.8067	93.8058
	SKR4	346.9454	346.9447	346.9451		SKR4	121.5838	121.5827	121.5833
	SKR2	56.5067	56.5096	56.5082		SKR2	205.9853	205.9874	205.9864
SKR3	SKRP	83.2732	83.2707	83.2720	SKR3	SKRP	232.7472	232.7497	232.7485
	SKR4	330.8321	330.8349	330.8335		SKR4	80.3104	80.3083	80.3094
	SKR2	361.2605	361.2633	361.2619		SKR2	26.5385	26.5405	26.5395
SKR4	SKRP	383.9693	383.9671	383.9682	SKR4	SKRP	49.2499	49.2478	49.2489
	SKR3	3.7498	3.7515	3.7507		SKR3	69.0276	69.0300	69.0288

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability	
	dN SKR2	-3.45	3.45	>		Unstable	
	dE SKR2	1.26	1.26	<		Unstable	
	dN SKRP	2.00	2.00	<		Stable	
2002 2005	dE SKRP	-0.53	0.53	<	2.24	Stable	
2003 VS 2005	dN SKR3	1.16	1.16	<	2.51	Stable	
	dE SKR3	1.23	1.23	<		Stable	
	dN SKR4	-1.49	1.49	<		Unstable	
	dE SKR4	-2.70	2.70	>		Unstable	
	dN SKR2	-1.92	1.92	<		Ctable	
2003 vs 2006	dE SKR2	1.11	1.11	<		Stable	
	dN SKRP	0.34	0.34	<		Chable	Channel
	dE SKRP	-1.17	1.17	<	2.31	Stable	Stages
	dN SKR3	1.41	1.41	<		Unctable	
	dE SKR3	2.61	2.61	>		Unstable	
	dN SKR4	-1.33	1.33	<		Unstable	
	dE SKR4	-2.60	2.60	>			2003 vs 2 0
	dN SKR2	-0.49	0.49	<		Chable	
	dE SKR2	1.58	1.58	<		Stable	
	dN SKRP	-0.31	0.31	<		Stable	
2002 ve 2007	dE SKRP	-1.28	1.28	<	2 21	Stable	
2003 vs 2007	dN SKR3	1.43	1.43	<	2.51	Stable	
	dE SKR3	-0.20	0.20	<		Stable	
	dN SKR4	-1.71	1.71	<		Stable	
	dE SKR4	-0.65	0.65	<		Stable	2003 vs 20

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability	
	dN SKR2	-0.69	0.69	<		Stable	
	dE SKR2	1.95	1.95	<		Juble	
	dN SKRP	-0.55	0.55	<		Ctable	
2002 ve 2000	dE SKRP	-1.30	1.30	<	2 21	Stable	
2003 VS 2009	dN SKR3	2.04	2.04	<	2.51	Stable	
	dE SKR3	-0.78	0.78	<		Jtable	
	dN SKR4	-2.36	2.36	>		Unstable	
	dE SKR4	-0.80	0.80	<		Unstable	
	dN SKR2	-1.03	1.03	<		Stable	
2003 vs 2010	dE SKR2	0.48	0.48	<		Jable	
	dN SKRP	-0.49	0.49	<		Stable	
	dE SKRP	0.42	0.42	<	2 21	Jtable	
	dN SKR3	1.57	1.57	<	2.51	Stable	
	dE SKR3	-0.57	0.57	<		Jubic	
	dN SKR4	-1.40	1.40	<		Stable	
	dE SKR4	-1.13	1.13	<		Stable	
	dN SKR2	-2.62	2.62	>		Unctable	
	dE SKR2	1.66	1.66	<		Unstable	
	dN SKRP	1.19	1.19	<		Stable	
2003 1/5 2013	dE SKRP	-2.16	2.16	<	2 21	JUADIE	
2003 15 2013	dN SKR3	1.22	1.22	<	2.51	Unstable	
	dE SKR3	4.02	4.02	>		onstable	
	dN SKR4	-1.37	1.37	<		Unstable	
	dE SKR4	-3.28	3.28	>		Chistable	

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

ε _{NN}	0.000002		17
ε _{EE}	0.000000		
٤ _{simple}	0.000007		
ε _{pure}	0.000001		
ε _{MAX}	0.00008	+ extension	0.8 ppm
ε _{MIN}	-0.000006	- contraction	-0.6 ppm
20	80.4111		
θ	40.2056	direction of the maximum principa	l axis, clockwise from N-axis

Figur 3.10

SMID Station TS Global Congruence Test

APPENDIX 3 - SULDRUP [SULD]

Tidserie: 81003

GPS Antenna	SULD 61-10-00802	
	SUL1 61-10-00804	
Nærkontrol	SUL2 61-10-00805	
	SUL3 61-10-00806	JessenPunkt
	SUL4 61-10-00803	
Fjernkontrol	GRAV G.I.2257 61-07-00009	
Boltori	61-10-09023	
fundament	61-10-09024	
runuament	61-10-09025	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The Jessenpunkt SUL3 (61-10-00806) is unstable, subsiding with a rate of approximately 0.38 \pm 0.03 mm/year.
- The nærkontrol point SUL1 (61-10-00806) presents a discordant behavior, thus is considered to be unstable. The trend cannot be deduced from this analysis; regression analysis should be performed again, using a stable Jessenpunkt.
- In terms of planimetric coordinates: check 2012. Maybe measure one more time with TS.
- The congruence test doesn't show reliable results (because of the unstable Jessenpunkt).
- Strain analysis doesn't indicate predisposition to local instability.

2. NIVELLEMENT

- Initial plots
- Regression analysis

SULDRUP (SULD) Linear Regression analysis results

Tuna		2 parameters regression model (linear fitting)						
Туре	Punkt	θ ₁ [m/year]	σ _{θ1} [m/year]	t - value	p -value			
GPS Antenna	SULD 61-10-00802	0.000434	0.000031	14.138600	0.000008			
Bolter i fundament	61-10-09023	0.000364	0.000029	12.688200	0.000000			
	61-10-09024	0.000381	0.000022	17.496700	0.000000			
	61-10-09025	0.000397	0.000026	15.000600	0.000000			
	SUL1 61-10-00804	-0.000257	0.000022	-11.559300	0.000000			
Nærkontrol	SUL2 61-10-00805	0.000373	0.000027	13.566600	0.000000			
	SUL4 61-10-00803	0.000373	0.000038	9.867300	0.000004			
Fjernkontrol	GRAV 61-07-00009 G.I.2257	Not enough input data (need more heights in the time series)						

Statistically significant results --> Linear Regression

Туре	Point	Behaviour	Variation [mm/year]	Std [mm/year]
GPS Antenna	SULD 61-10-00802	\uparrow	0.43	0.03
	61-10-09023	\uparrow	0.36	0.03
Bolter i fundament	61-10-09024	\uparrow	0.38	0.02
Tunuament	61-10-09025	\uparrow	0.40	0.03
	SUL1 61-10-00804	\downarrow	-0.26	0.02
Nærkontrol	SUL2 61-10-00805	^	0.37	0.03
	SUL4 61-10-00803	\uparrow	0.37	0.04

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

6	Station: SULD									
Constant	Antenna	Sikringspunkter				Nærkontro	Fjernkontrol			
value [mm]	SULD	9023	9024	9025	SUL1	SUL2	SUL4	GRAV		
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		
1	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		
1.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		
2	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil		

2012

2001 2003 2005 2007 2009

A-test: Punkt er USTABIL

1999

76.50200

76.50000

Bedste rette linie 3.0*middelfejl

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test

32

- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Figur 3.9

SUL4 61-10-00803 (Total Station Data vs GNSS Data)

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

	Stage 1 - 2003					Stage 2 - 2002					
From	То	Horizontal d	directions	Average	From	То	Horizontal directions		Average		
SU 1	SUL3	97.6436	97.6427	97.6432	SUL1	SUL3	104.8864	104.8868	104.8866		
SULI	SUL4	130.9450	130.9449	130.9450		SUL4	138.1880	138.1878	138.1879		
5111.2	SUL1	95.1062	95.1017	95.1040	SUL3	SUL1	354.9814	354.9810	354.9812		
3013	SUL4	15.9437	15.9461	15.9449		SUL4	275.8196	275.8198	275.8197		
SUL4	SUL1	332.1199	332.1199	332.1199	5111.4	SUL1	152.0834	152.0839	152.0837		
	SUL3	19.6584	19.6596	19.6590	3014	SUL3	239.6216	239.6205	239.6211		

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability
2003 vs 1998	dN SUL1	2.86	2.86	>	2.31	Unstable
	dE SUL1	3.96	3.96	>		
	dN SUL3	3.75	3.75	>		Unstable
	dE SUL3	-3.16	3.16	>		
	dN SUL4	-3.95	3.95	>		Unstable
	dE SUL4	2.08	2.08	<		
	dN SUL1	20.40	20.40	>	2.31	Unstable
2003 vs 2001	dE SUL1	70.99	70.99	>		
	dN SUL3	76.04	76.04	>		Unstable
	dE SUL3	-28.69	28.69	>		
	dN SUL4	-60.96	60.96	>		Unstable
	dE SUL4	1.12	1.12	<		
2003 vs 2002	dN SUL1	-0.68	0.68	<	2.31	Unstable
	dE SUL1	13.56	13.56	>		
	dN SUL3	15.82	15.82	>		Unstable
	dE SUL3	-1.34	1.34	<		
	dN SUL4	-10.17	10.17	>		Unstable
	dE SUL4	-5.14	5.14	>		
2003 vs 2004	dN SUL1	-0.67	0.67	<		Chable
	dE SUL1	0.05	0.05	<		Stable
	dN SUL3	0.25	0.25	<	2 21	Stable
	dE SUL3	0.60	0.60	<	2.31	Stable
	dN SUL4	0.18	0.18	<		Stable
	dE SUL4	-0.81	0.81	<		Jable

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability
2002.00 2005	dN SUL1	-1.14	1.14	<	2.31	Stable
	dE SUL1	2.00	2.00	<		
	dN SUL3	2.62	2.62	>		Unstable
200303 2003	dE SUL3	0.74	0.74	<		
	dN SUL4	-1.16	1.16	<		Stable
	dE SUL4	-1.97	1.97	<		
	dN SUL1	0.61	0.61	<	2.31	Stable
	dE SUL1	0.86	0.86	<		
2003 ve 2007	dN SUL3	0.82	0.82	<		Stable
2003 VS 2007	dE SUL3	-0.68	0.68	<		
	dN SUL4	-0.86	0.86	<		Stable
	dE SUL4	0.44	0.44	<		
	dN SUL1	-2.25	2.25	<	2.31	Unstable
2003 vs 2009	dE SUL1	70.33	70.33	>		
	dN SUL3	81.69	81.69	>		Unstable
	dE SUL3	-8.13	8.13	>		
	dN SUL4	-53.15	53.15	>		Unstable
	dE SUL4	-25.14	25.14	>		Unstable
2003 vs 2011	dN SUL1	-1.07	1.07	<		Stable
	dE SUL1	-1.69	1.69	<		Stable
	dN SUL3	-1.65	1.65	<	2 21	Stable
	dE SUL3	1.21	1.21	<	2.31	Jable
	dN SUL4	1.64	1.64	<		Stable
	dE SUL4	-0.71	0.71	<		stable

0.0010

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

-0.000006

-0.000007

0.000011

0.000001

0.000005

-0.000018

94.0447

ε_{nn}

 $\boldsymbol{\epsilon}_{\text{EE}}$

ε_{simple}

ε_{pure}

 $\boldsymbol{\epsilon}_{\text{MAX}}$

ε_{ΜIN} 2θ

sible two work	SULD SULD SULA SULA SULA SULA SULA	
	0.5 ppm -1.8 ppm	

θ 47.0224 direction of the maximum principal axis, clockwise from N-axis

+ extension

- contraction

APPENDIX 4 - ESBJERG H [ESBH]

Tidserie: 81001

GPS Antenna	ESBH K-75-00959	
	ESH1 K-75-00956	JessenPunkt
Nærkontrol	ESH2 K-75-09394	
	ESH3 K-75-09395	
Fjernkontrol	HAVN K-75-00957 G.I.2109	
Bolter i fundament	135-08-09881	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- Regression analysis provides significant trends for:
 - The GNSS antenna ESBH (K-75-0959) \rightarrow subsiding with a rate of approximately 1.51 \pm 0.11 mm/year
 - − The nærkontrol point ESH2 (K-75-09394) \rightarrow subsiding with a rate of approximately 0.65 ± 0.03 mm/year
- All of the points are considered unstable by the A-test (regardless of the chosen parameters).
- All the results showed by the other analyses were as expected.

2. NIVELLEMENT

- Initial plots
- Regression analysis

EsbjergH (ESBH) Linear Regression analysis results

_		2 parameters regression model (linear fitting)					
Туре	Punkt	θ_1 [m/year]	σ _{θ1} [m/year]	t - value	p -value		
GPS Antenna	ESBH K-75-00959	-0.001507	0.000106	-14.193800	0.000008		
Nortkentrel	ESH2 K-75-09394	-0.000650	0.000030	-21.958300	0.000000		
Nærkontrol	ESH3 K-75-09395	0.000207	0.000027	7.758700	0.000111		

Statistically significant results --> Linear Regression

Туре	Point	Behaviour	Variation [mm/year]	Std [mm/year]
GPS Antenna	ESBH K-75-00959	\downarrow	-1.51	0.11
Nærkontrol	ESH2 K-75-09394	\downarrow	-0.65	0.03

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant	Station: ESBH						
	Antenna	Nærk	ontrol	Fjernkontrol			
value [mm]	ESBH	ESH2	ESH3	HAVN			
0.3	ustabil	ustabil	ustabil	stabil			
0.4	ustabil	ustabil	ustabil	stabil			
0.5	ustabil	ustabil	ustabil	stabil			
0.6	ustabil	ustabil	ustabil	stabil			
0.8	ustabil	ustabil	ustabil	stabil			
1	ustabil	ustabil	ustabil	stabil			
1.5	ustabil	ustabil	ustabil	stabil			
2	ustabil	ustabil	ustabil	stabil			

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test
- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Variation E [m]

0.002

0.0040

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Stages	STUDENT TES	Γtj	ţ١]		t _{lim}	Stability
	dN ESH1	1.84	1.84	<		Unstable
	dE ESH1	2.85	2.85	>		Unstable
2005	dN ESH2	-2.62	2.62	>	2.21	Unstable
2005 12000	dE ESH2	-1.74	1.74	<	2.31	Unstable
I	dN ESH3	2.82	2.82	>		Unstable
	dE ESH3	-1.24	1.24	<		Unstable
	dN ESH1	5.02	5.02	>		Unstable
I	dE ESH1	3.46	3.46	>		Unstable
2005 102007	dN ESH2	-4.56	4.56	>	2.21	Unstable
2005 VS2007	dE ESH2	0.94	0.94	<	2.31	Unstable
I	dN ESH3	3.89	3.89	>		Unstable
	dE ESH3	-4.83	4.83	>		Unstable
	dN ESH1	1.68	1.68	<		Unstable
I	dE ESH1	2.53	2.53	>		Unstable
2005	dN ESH2	-2.34	2.34	>	2.21	Unshahle
2005 VS2008	dE ESH2	-1.49	1.49	<	2.31	Unstable
I	dN ESH3	2.50	2.50	>		the state is to
	dE ESH3	-1.16	1.16	<		Unstable
	dN ESH1	1.67	1.67	<		1 In stall la
I	dE ESH1	3.88	3.88	>	1	Unstable
2005	dN ESH2	-3.14	3.14	>	2.21	Unstable
2005 / 2010	dE ESH2	-3.28	3.28	>	2.51	Unstable
	dN ESH3	3.69	3.69	>		Unstable
	dE ESH3	-0.70	0.70	<		Unstable

Stages	STUDENT TES	ſ tj	tj		t _{lim}	Stability
	dN ESH1	3.96	3.96	>		Unstable
	dE ESH1	3.75	3.75	>		Unstable
2005	dN ESH2	-4.21	4.21	>	2.21	Unstable
2005 052012	dE ESH2	-0.60	0.60	<	2.51	Unstable
	dN ESH3	3.97	3.97	>		United
	dE ESH3	-3.47	3.47	>		Unstable
	dN ESH1	4.22	4.22	>		United
	dE ESH1	4.94	4.94	>		Unstable
	dN ESH2	-5.04	5.04	>	2.31	Unstable
2005 12015	dE ESH2	-1.89	1.89	<		Unstable
	dN ESH3	5.06	5.06	>		Unstable
	dE ESH3	-3.38	3.38	>		Unstable
	dN ESH1	7.35	7.35	>		Line started at
	dE ESH1	8.06	8.06	>		Unstable
2005 vs 2014	dN ESH2	-8.46	8.46	>	2.21	Unstable
	dE ESH2	-2.56	2.56	>	2.31	Unstable
	dN ESH3	8.33	8.33	>		Unstable
	dE ESH3	-6.08	6.08	>		Unstable

41

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

ε _{nn}	-0.000016		
ε	0.000005		
ε _{simple}	0.000017		
ε _{pure}	-0.000011		
ε _{MAX}	0.000014	+ extension	1.4 ppm
ε _{MIN}	-0.000026	- contraction	-2.6 ppm
20	-42.2661		
θ	178.8670	direction of the maximum principal a	axis, clockwise from N-axis

Figur 3.8

APPENDIX 5 - ESBJERG C [ESBC]

Tidserie: 81004

GPS Antenna	ESBC 135-08-00932	
	ESC1 135-08-00936	
Nærkontrol	ESC2 135-08-00935 81004	JessenPunkt
	ESC3 135-08-09880	
Fjernkontrol	HAVN K-75-00957 G.I.2109	
	135-08-09881	
Bolter i	135-08-09882	
fundament	135-08-09883	
	135-08-09884	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The A-test shows instability. However, manual analysis indicates the station is stable.
- Pay attention to ESC1 and its future determined elevations.
- In terms of planimetric coordinates: the TS data shows a curious behaviour (Figur 3.2). Maybe take another TS measurement.
- The congruence test shows relative stability between the points.
- Strain analysis doesn't indicate predisposition to local instability.

2. NIVELLEMENT

- Initial plots
- Regression analysis

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant	Station: ESBC							
Constant	Antenna		Sikringspunkter			Nærk	ontrol	Fjernkontrol
value [mm]	ESBC	9881	9882	9883	9884	ESC1	ESC3	HAVN
0.3	ustabil	ustabil	stabil	ustabil	stabil	ustabil	ustabil	stabil
0.4	ustabil	ustabil	stabil	ustabil	stabil	ustabil	ustabil	stabil
0.5	ustabil	ustabil	stabil	ustabil	stabil	ustabil	ustabil	stabil
0.6	ustabil	ustabil	stabil	stabil	stabil	ustabil	ustabil	stabil
0.8	ustabil	ustabil	stabil	stabil	stabil	ustabil	ustabil	stabil
1	ustabil	ustabil	stabil	stabil	stabil	ustabil	stabil	stabil
1.5	stabil	stabil	stabil	stabil	stabil	ustabil	stabil	stabil
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test
- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Stages	STUDENT TEST	t _j	t _j		t _{lim}	Stability
	dN ESC1	-2.60	2.60	>		Unstable
	dE ESC1	0.84	0.84	<		Unstable
2005 vs 2006	dN ESC2	0.21	0.21	<	2 21	Stablo
	dE ESC2	-1.64	1.64	<	2.51	Stable
	dN ESC3	0.54	0.54	<		Stable
	dE ESC3	2.17	2.17	<		Stable
	dN ESC1	-3.99	3.99	>		Unstable
	dE ESC1	0.35	0.35	<		Unstable
2005 vc 2007	dN ESC2	1.45	1.45	<	2 21	Stable
2005 VS 2007	dE ESC2	-1.84	1.84	<	2.31	Stable
	dN ESC3	-0.18	0.18	<		Unstable
	dE ESC3	2.93	2.93	>		Unstable
	dN ESC1	-0.73	0.73	<		Stable
	dE ESC1	0.58	0.58	<		Jubic
2005 vs 2008	dN ESC2	-0.35	0.35	<		Stable
2003 V3 2008	dE ESC2	-0.71	0.71	<	2.51	
	dN ESC3	0.52	0.52	<		Stable
	dE ESC3	0.76	0.76	<		Stable
2005 vs 2010	dN ESC1	-0.79	0.79	<		Stable
	dE ESC1	0.61	0.61	<		Stable
	dN ESC2	-0.36	0.36	<	2 21	Stable
	dE ESC2	-0.75	0.75	<	2.51	Stable
	dN ESC3	0.54	0.54	<		Stable
	dE ESC3	0.81	0.81	<]	Stable

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

ε _{NN}	0.000002		
ε _{EE}	0.000000		
ε _{simple}	0.000002		
٤ _{pure}	0.000001		
ε _{ΜΑΧ}	0.000004	+ extension	0.4 ppm
ε _{MIN}	-0.000002	- contraction	-0.2 ppm
20	60.2103		
θ	30.1051	direction of the maximum	principal axis, clockwise from N-axis

Figur 3.8

ESBC Station TS Global Congruence Test

APPENDIX 6 - GEDSER [GESR]

Tidserie: 81005

GPS Antenna	GESR 52-03-00849	
	GED1 52-03-00843	
	GED2 52-03-00845	→ JessenPunkt
Nærkontrol	GED3 52-03-00846	
	GED4 52-03-00847	
	GED6 52-03-00853	
Fjernkontrol	GEDN 52-03-00850 G.I.2242	
	52-03-09089	
Bolter i	52-03-09090	
fundament	52-03-09091	
	52-03-09092	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The A-test shows instability for most of the considered points. Manual analysis shows that the concrete bolts are stable. However there are problems with the nærkontrol points and *possibly* with the station.
- Pay attention to GED3 and GED4 and their future determined elevations.
- In terms of planimetric coordinates: no large displacements can be observed.
- The congruence test shows relative stability between the points.
- Strain analysis doesn't indicate predisposition to local instability.

2. NIVELLEMENT

- Initial plots
- Regression analysis

GEDSER (GESR) Linear Regression analysis results

Туре	Punkt	2 parameters regression model (linear fitting)					
		θ ₁ [m/year]	σ _{e1} [m/year]	t - value	p -value		
GPS Antenna	GESR 52-03-00849	-0.000152	0.000048	-3.168600	0.019354		
	52-03-09089	-0.000042	0.000009	-4.720100	0.001089		
Bolter i	52-03-09090	-0.000037	0.000010	-3.774900	0.005428		
fundament	52-03-09091	-0.000040	0.000007	-5.801800	0.000404		
	52-03-09092	-0.000042	0.00008	-5.252800	0.000771		
Norkontrol	GED3 52-03-00846	-0.000949	0.000196	-4.832600	0.000931		
Nærkontrol	GED4 52-03-00847	-0.000542	0.000032	-17.035500	0.000000		

Statistically significant results --> Linear Regression

Туре	Point	Behaviour	Variation [mm/year]	Std [mm/year]
Nærkontrol	GED4 52-03-00847	\downarrow	-0.54	0.03

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant				Stat	tion: GESR			
Constant	Antenna	a Sikringspunkter			Nærk	ontrol	Fjernkontrol	
value [mm]	GESR	9089	9090	9091	9092	GED3	GED4	GEDN
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil
0.6	ustabil	ustabil	stabil	stabil	stabil	ustabil	ustabil	stabil
0.8	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil
1	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil
1.5	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil
2	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test

53

- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Global Congruence Test

 Compares the geometry of a network at two different stages in time;

Figur 3.9

- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

	Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability
try		dN GED2	-1.94	1.94	<		Stable
NO		dE GED2	1.73	1.73	<		Stable
	2005 ve 2006	dN GED3	1.99	1.99	<	2 21	Stable
	2005 VS 2006	dE GED3	-1.73	1.73	<	2.51	Stable
ed		dN GED4	-2.07	2.07	<		Stable
		dE GED4	1.73	1.73	<		Stable
ate		dN GED2	-1.81	1.81	<		Stable
its		dE GED2	1.54	1.54	<		Stable
eir	2005 vc 2007	dN GED3	1.89	1.89	<	2 21	Stable
ed	2003 VS 2007	dE GED3	-1.54	1.54	<	2.51	Stable
		dN GED4	-1.99	1.99	<		Ctable
ne		dE GED4	1.55	1.55	<		Stable
		dN GED2	-0.84	0.84	<		Stable
		dE GED2	0.45	0.45	<		Stable
	2005 VC 2009	dN GED3	0.95	0.95	<	2 21	Stable
	2003 VS 2008	dE GED3	-0.46	0.46	<	2.51	Stable
		dN GED4	-1.10	1.10	<		Ctable
		dE GED4	0.46	0.46	<		Stable
		dN GED2	-1.92	1.92	<		Ctable
		dE GED2	1.93	1.93	<		Stable
	2005 vc 2011	dN GED3	1.91	1.91	<	2 21	Stable
	2003 VS 2011	dE GED3	-1.93	1.93	<	2.51	Stable
		dN GED4	-1.89	1.89	<		Stable
		dE GED4	1.93	1.93	<		Stable

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

GED2	×	GED3	GED4
	GED6 💡	Q GESR	

ε _{nn}	0.000116			
ε _{εε}	-0.000126			
٤ _{simple}	-0.000334			
ε _{pure}	0.000121			
ε _{MAX}	0.000350	+ extension	35.0 ppm	
ε _{MIN}	-0.000360	- contraction	-36.0 ppm	
20	-60.1458			
θ	369.9271	direction of the maximum	principal axis, clockwise from N-axis	

Disregard results: the conformation of the triangle is not optimal!

APPENDIX 7 - HIRTSHALS [HIRS]

Tidserie: 81002

GPS Antenna	HIRS 54-05-00837	
	HIR2 54-05-00843	JessenPunkt
Nærkontrol	HIR3 54-05-00842	
	HIR4 54-05-00845	
Fjernkontrol	HHLS 54-05-00832 G.I.2256	
	54-05-09181	
Bolter i	54-05-09182	
fundament	54-05-09183	
	54-05-09184	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The A-test shows instability. However, manual analysis indicates the station is stable.
- Pay attention to HIR3 and its future determined elevations.
- In terms of planimetric coordinates: no large displacements can be observed.
- The congruence test shows relative stability between the points.
- Strain analysis doesn't indicate predisposition to local instability.

Figur 1.3

2. NIVELLEMENT

- Initial plots
- Regression analysis

Figur 3.1

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Countrast	Station: HIRS								
Constant	Antenna		Sikrings	spunkter	nkter Nærkon			Fjernkontrol	
value [mm]	HIRS	9181	9182	9183	9184	HIR3	HIR4	HHLS	
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	
0.6	ustabil	ustabil	ustabil	ustabil	stabil	ustabil	stabil	stabil	
0.8	ustabil	ustabil	stabil	ustabil	stabil	ustabil	stabil	stabil	
1	ustabil	ustabil	stabil	ustabil	stabil	ustabil	stabil	stabil	
1.5	ustabil	ustabil	stabil	ustabil	stabil	ustabil	stabil	stabil	
2	stabil	stabil	stabil	ustabil	stabil	stabil	stabil	stabil	

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- **Initial plots GNSS** -
- **Comparison GNSS vs TS** -
- **Global Congruence Test** _
- Strain Analysis

^{!!} In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability
	dN HIR2	0.70	0.70	<		Stable
	dE HIR2	0.65	0.65	<		Stable
2006	dN HIR3	-0.57	0.57	<	2 21	Stable
2006 vs 2007	dE HIR3	0.73	0.73	<	2.31	Stable
	dN HIR4	-0.33	0.33	<		Stable
	dE HIR4	-0.68	0.68	<		Stable
	dN HIR2	0.27	0.27	<		Stable
	dE HIR2	0.92	0.92	<		Stable
2006 116 2008	dN HIR3	-1.02	1.02	<	2 21	Stable
2008 vs 2008	dE HIR3	0.59	0.59	<	2.31	Stable
	dN HIR4	0.61	0.61	<		Chable
	dE HIR4	-0.83	0.83	<		Stable
	dN HIR2	1.03	1.03	<		Chable
	dE HIR2	1.07	1.07	<		Stable
2006 1 2012	dN HIR3	-0.98	0.98	<	2 21	Stable
2008 VS 2012	dE HIR3	1.12	1.12	<	2.31	Stable
	dN HIR4	-0.35	0.35	<		Stable
	dE HIR4	-1.10	1.10	<		Stable

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

ε _{nn}	0.000000			
ε _{ΕΕ}	0.000002			
٤ _{simple}	0.000002			
٤ _{pure}	-0.000001			
ε _{MAX}	0.000004	+ extension	0.4 ppm	
ε _{MIN}	-0.000001	- contraction	-0.1 ppm	
20	-61.0614			
θ	169.4693	direction of the maximum p	rincipal axis, clockwise from N-axis	

APPENDIX 8 - FERRING [FERR]

Tidserie: 81051

GPS Antenna	FERR 125-03-00804
	FER1 125-03-00006
Nærkontrol	FER2 125-03-00007
Nærkontroi	FER3 125-03-00008
	FER4 125-03-00009
Fjernkontrol	BFYR 125-09-00008 G.I.2271
Fjernkontrol	BFYR 125-09-00008 G.I.2271 125-03-09027
Fjernkontrol Bolter i	BFYR 125-09-00008 G.I.2271 125-03-09027 125-03-09028
Fjernkontrol Bolter i fundament	BFYR 125-09-00008 G.I.2271 125-03-09027 125-03-09028 125-03-09029

JessenPunkt: G.I.2178

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The A-test shows instability. However, manual analysis indicates the station is stable. The slight variations seem to be caused by the Jessenpunkt.
- In terms of planimetric coordinates: no large displacements can be observed. Same can be observed from the congruence test.
- Strain analysis doesn't indicate predisposition to local instability.

2. NIVELLEMENT

- Initial plots
- Regression analysis

Bedste rette linie 3.0*middelfejl

23.07700

Tidserie 81051 [Jessenpunkt G.I.2178]

Bedste rette linie

3.0*middelfejl

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant										
Constant	Antenna		Sikrings	punkter			Nærk	ontrol		Fjernkontrol
value [mm]	FERR	9027	9028	9029	9030	FER1	FER2	FER3	FER4	BFYR
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil
1	ustabil	ustabil	stabil	ustabil	ustabil	ustabil	stabil	stabil	stabil	ustabil
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test

69

- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Stages	STUDENT TEST	t _j	t _j		t _{lim}	Stability
	dN FER1	-2.76	2.76	>		Unstable
	dE FER1	0.77	0.77	<		Unstable
	dN FER2	0.68	0.68	<		Unstable
2009 vc 2010	dE FER2	-3.77	3.77	>	2 21	Unstable
2009 VS 2010	dN FER3	2.16	2.16	<	2.51	Unstable
	dE FER3	2.69	2.69	>		Unstable
	dN FER4	-0.49	0.49	<		Stable
	dE FER4	0.17	0.17	<		Stable

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

ε _{nn}	0.000005				1	
ε	-0.000005					
ε _{simple}	-0.000002					
ε _{pure}	0.000005					
ε _{MAX}	0.000006	+ extension			0.6 ppm	
ε _{MIN}	-0.000006	- contraction			-0.6 ppm	
20	-14.0252					
θ	392.9874	direction of the maximum principal axis, clockwise from N-axis				

APPENDIX 9 - HAVNEBYEN [HABY]

Tidserie: 81141

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The A-test shows stability for the majority of the points.
- In terms of planimetric coordinates: no large displacements can be observed.
- The congruence test shows a slight displacement for the Jessenpunkt (HAB3). Pay attention to it and its future determinations.
- Strain analysis doesn't indicate predisposition to local instability.

Bedste rette linie

Bedste rette linie

2014

3.0*middelfejl

3.0*middelfejl

2014

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

C	Station: HABY										
Constant	Antenna	enna Sikringspunkter					Nærkontro	I	Fjernkontrol		
value [initi]	HABY	9031	9032	9033	9034	HAB1	HAB2	HAB4	НВҮК		
0.3	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.4	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.5	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.6	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.8	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
1	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test
- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

77

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability	
	dN HAB1	1.77	1.77	<		Stable	
	dE HAB1	-1.05	1.05	<		Stable	
	dN HAB2	-1.00	1.00	<		Stable	
2010 vc 2011	dE HAB2	-1.11	1.11	<	2 21	Stable	
2010 VS 2011	dN HAB3	3.83	3.83 > 2.51		Unstable		
	dE HAB3	dE HAB3 1.01 1.01 <		<		Unstable	
	dN HAB4	-2.93	2.93	>		Line and a late	
	dE HAB4	1.23	1.23	<		Unstable	

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

ε _{nn}	0.000002		
ε	-0.000004		
ε _{simple}	0.000002		
ε _{pure}	0.000003		
ε _{max}	0.000003	+ extension	0.3 ppm
ε _{MIN}	-0.000004	- contraction	-0.4 ppm
20	21.3938		
θ	10.6969	direction of the maximum principal a	ixis, clockwise from N-axis

APPENDIX 10 - TEJN [TEJH]

Tidserie: 81152

GPS Antenna	TEJH 140-03-00842					
	TEJ2 140-03-00838					
	TEJ3 140-03-00841 G.I.2278					
Nærkontrol	TEJ4 140-03-00840					
	TEJ5 140-03-00839					
	TEJN 140-03-00835					
Fjernkontrol	BORR 140-04-00001 G.I.2373					
	140-03-09100					
Bolter i	140-03-09101					
fundament	140-03-09102					
	140-03-09103					

JessenPunkt: 140-03-09106

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The A-test shows stability for the majority of the considered points. Manual analysis indicates the station is also stable.
- In terms of planimetric coordinates: no large displacements can be observed.
- The congruence test shows relative stability between the points.
- Strain analysis doesn't indicate predisposition to local instability.

2. NIVELLEMENT

- Initial plots
- Regression analysis

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant		Station: TEJH										
Value [mm]	Antenna		Sikrings	punkter			Fjernkontro					
	TEJH	9100	9101	9102	9103	TEJ2	TEJ3	TEJ4	TEJ5	TEJN	BORR	
0.3	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	
0.4	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	
0.5	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	
0.6	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	
0.8	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	
1	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test
- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

0.000008

0.000020

ε

ε_{EE} ε_{simple} ε_{pure}

ε_{ΜΑΧ}

ε_{ΜIN} 2θ θ

0.000030		
-0.000006		
0.000044	+ extension	4.4 ppm
-0.000016	- contraction	-1.6 ppm
-75.4476		
162.2762	direction of the maximum princip	al axis, clockwise from N-axis

APPENDIX 11 - FYNSHAV [FYHA]

Tidserie: 81148

GPS Antenna	FYHA 155-06-00814	
	FYH1 155-06-00815	>> JessenPunkt
Nærkontrol	FYH2 155-06-00816	
	FYH3 155-06-00817	
	FYH4 155-06-00818	
Fjernkontrol	FHAV 155-06-00813 G.I.2113	
	155-06-09075	
Bolter i	155-06-09076	
fundament	155-06-09077	
	155-06-09078	

1. Skitser:

Figur 1.1

Figur 1.2

Notes:

- The A-test shows stability for the majority of the considered points. Manual analysis indicates the station is also stable.
- In terms of planimetric coordinates: pay attention to FYH2. The congruence test also shows relative instability for FYH2.
- Strain analysis doesn't indicate predisposition to local instability.

Figur 1.3

0.0040 0.0030 **2. NIVELLEMENT** 0.0020 0.0010 H variation [m] 0.0000 Initial plots --0.0010 Regression analysis --0.0020

2014

Tests: 'Ignore limit' for stability test [previously 0.4 mm]

Constant	Station: FYHA									
Constant Volue [mm]	Antenna	na Sikringspunkter				r	lærkontro		Fjernkontrol	
value [mm]	FYHA	9075	9076	9077	9078	FYH2	FYH3	FYH4	FHAV	
0.3	ustabil	ustabil	ustabil	stabil	stabil	ustabil	stabil	stabil	ustabil	
0.4	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil	
0.5	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil	
0.6	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil	
0.8	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil	
1	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil	
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil	
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil	

3. PLANIMETRIC ANALYSIS

- Initial plots TS
- Initial plots GNSS
- Comparison GNSS vs TS
- Global Congruence Test

93

- Strain Analysis

!! In order to avoid too many labels, in the following plots, different color nuances are used to depict the evolution of the time series, from a light color to a dark color. Ex: the series starts from light green for the first year and ends with dark green for the last.

Global Congruence Test

- Compares the geometry of a network at two different stages in time;
- Uses only measured horizontal directions;
- Shows if any of the points are unstable (their position changed significantly between the two stages).

Stages	STUDENT TEST	tj	t _j		t _{lim}	Stability	
	dN FYH1	-2.69	2.69	>		Unstable	
	dE FYH1	0.55	0.55	<		Unstable	
	dN FYH2	3.05	3.05	>		Unstable	
2012 ve 2012	dE FYH2	1.94	1.94	<	2 21	onstable	
2012 VS 2013	dN FYH3	-0.36	0.36	<	2.31 Stabl	Stable	
	dE FYH3	-2.31	2.31	<			
	dN FYH4	1.02	1.02	<		Ctable	
	dE FYH4	-0.21	0.21	<		Stable	

Strain Analysis

- Provides information about the possible tensions present in a local area;
- Uses only point coordinates in two temporal stages;
- Indicates in which direction the network points are predisposed to instability.

ε _{NN}	-0.000001				
ε	0.000001				
ε _{simple}	-0.000002				
ε _{pure}	-0.000001				
ε _{MAX}	0.000003	+ extension		0.3 ppm	
ε _{MIN}	-0.000002	- contraction		-0.2 ppm	
20	53.3730				
۵	226 6965	direction of the maximum	principal axis cloc	kwise from N axis	

APPENDIX 12 – Stability algorithm testing

Constant	Station: BUDP									
Constant	Antenna	Sik	ringspunk	ter	Nærkontrol					
value [mm]	BUDP	9113	9114	9115	BUD1	BUD3	BUDD			
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil			
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil			
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil			
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil			
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil			
1	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil			
1.5	ustabil	stabil	stabil	stabil	ustabil	ustabil	ustabil			
2	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil			

Table 1 – Test results for BUDP station

Countrast	Station: SMID									
Constant	Antenna	Sikringspunkter				Nærkontro	bl	Fjernkontrol		
value [mm]	SMID	9058	9059	9060	SKR2	SKRP	SKR4	VEJL	KORE	
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil	
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil	
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil	
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	stabil	
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	stabil	ustabil	stabil	stabil	
1	ustabil	ustabil	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	
1.5	ustabil	stabil	stabil	stabil	ustabil	stabil	stabil	stabil	stabil	
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	

Table 2 – Test results for SMID station

Constant	Station: SULD											
Constant	Antenna	Sik	ringspunk	ter		Nærkontro)	Fjernkontrol				
value [mm]	SULD	9023	9024	9025	SUL1	SUL2	SUL4	GRAV				
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
1	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
1.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
2	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				

Table 3 – Test results for SULD station

Constant		Sta	tion: ESBH	
Constant	Antenna	Nærk	ontrol	Fjernkontrol
value [mm]	ESBH	ESH2	ESH3	HAVN
0.3	ustabil	ustabil	ustabil	stabil
0.4	ustabil	ustabil	ustabil	stabil
0.5	ustabil	ustabil	ustabil	stabil
0.6	ustabil	ustabil	ustabil	stabil
0.8	ustabil	ustabil	ustabil	stabil
1	ustabil	ustabil	ustabil	stabil
1.5	ustabil	ustabil	ustabil	stabil
2	ustabil	ustabil	ustabil	stabil

Table 4 – Test results for ESBH station

6		Station: ESBC										
Constant	Antenna		Sikrings	punkter	Nærk	ontrol	Fjernkontrol					
value [mm]	ESBC	9881	9882	9883	9884	ESC1	ESC3	HAVN				
0.3	ustabil	ustabil	stabil	ustabil	stabil	ustabil	ustabil	stabil				
0.4	ustabil	ustabil	stabil	ustabil	stabil	ustabil	ustabil	stabil				
0.5	ustabil	ustabil	stabil	ustabil	stabil	ustabil	ustabil	stabil				
0.6	ustabil	ustabil	stabil	stabil	stabil	ustabil	ustabil	stabil				
0.8	ustabil	ustabil	stabil	stabil	stabil	ustabil	ustabil	stabil				
1	ustabil	ustabil	stabil	stabil	stabil	ustabil	stabil	stabil				
1.5	stabil	stabil	stabil	stabil	stabil	ustabil	stabil	stabil				
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil				

Table 5 – Test results for ESBC station

Constant	Station: GESR										
Constant	Antenna		Sikrings	punkter		Nærk	ontrol	Fjernkontrol			
value [mm]	GESR	9089	9090	9091	9092	GED3	GED4	GEDN			
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil			
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil			
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil			
0.6	ustabil	ustabil	stabil	stabil	stabil	ustabil	ustabil	stabil			
0.8	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil			
1	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil			
1.5	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil			
2	ustabil	stabil	stabil	stabil	stabil	ustabil	ustabil	stabil			

Table 6 – Test results for GESR station

Constant	Station: HIRS											
Constant	Antenna		Sikring	spunkter		Nærk	ontrol	Fjernkontrol				
value [mm]	HIRS	9181	9182	9183	9183 9184		HIR4	HHLS				
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	stabil				
0.6	ustabil	ustabil	ustabil	ustabil	stabil	ustabil	stabil	stabil				
0.8	ustabil	ustabil	stabil	ustabil	stabil	ustabil	stabil	stabil				
1	ustabil	ustabil	stabil	ustabil	stabil	ustabil	stabil	stabil				
1.5	ustabil	ustabil	stabil	ustabil	stabil	ustabil	stabil	stabil				
2	stabil	stabil	stabil	ustabil	ustabil stabil		stabil	stabil				

Table 7 – Test results for HIRS station

Countrast		Station: FERR												
Constant	Antenna		Sikrings	punkter			Nærk	ontrol		Fjernkontro				
value [mm]	FERR	9027	9028	9029	9030	FER1	FER2	FER3	FER4	BFYR				
0.3	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil				
0.4	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil				
0.5	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil				
0.6	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil				
0.8	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil	ustabil				
1	ustabil	ustabil	stabil	ustabil	ustabil	ustabil	stabil	stabil	stabil	ustabil				
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil				
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil				

Table 8 – Test results for FERR station

6	Station: HABY										
Constant	Antenna		Sikrings	spunkter			Nærkontro	_	Fjernkontrol		
value [mm]	HABY	9031	9032	9033	9034	HAB1	HAB2	HAB4	НВҮК		
0.3	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.4	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.5	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.6	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.8	ustabil	stabil	ustabil	stabil	stabil	stabil	stabil	stabil	stabil		
1	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		

Table 9 – Test results for HABY station

		Station: TEJH											
Constant	Antenna		Sikrings	punkter			Nærkontrol						
value [mm]	TEJH	9100 9101 9102 9103					TEJ3	TEJ4	TEJ5	TEJN	BORR		
0.3	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.4	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.5	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.6	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
0.8	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
1	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil		

Table 10 – Test results for TEJH station

6	Station: FYHA										
Constant	Antenna		Sikrings	spunkter		1	Nærkontro		Fjernkontrol		
value [mm]	FYHA	9075	9076	9077	9078	FYH2	FYH3	FYH4	FHAV		
0.3	ustabil	ustabil	ustabil	stabil	stabil	ustabil	stabil	stabil	ustabil		
0.4	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil		
0.5	ustabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil		
0.6	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil		
0.8	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil		
1	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil		
1.5	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil		
2	stabil	stabil	stabil	stabil	stabil	stabil	stabil	stabil	ustabil		

Table 11 – Test results for FYHA station

Styrelsen for Dataforsyning og Infrastruktur

Rentemestervej 8 2400 København NV

https://www.sdfi.dk